Review Article

A Systematic Review on Environmental Factors associated with Autism Spectrum Disorder in Bangladesh

Md. Shahid Khan¹, Shafi Mohammad Tareq², Mohammad Alamgir Kabir³

Abstract

Objective: Exposure to different environmental factors appears to be widespread, detrimental to human brain development and a potential risk factor for autism spectrum disorder (ASD). We conducted a systematic review on the relationship between environmental factors and ASD in Bangladesh. Methods: This paper reviews the evidence on modifiable environmental factors that have been associated, in some studies, with ASD, including socio-demographic and physical environmental factors exposures during prenatal and postnatal periods. Besides, this review is restricted to human studies with at least 50 cases of ASD, having a valid comparison group, conducted within the past two decades. Moreover, literatures searched using three electronic databases (PubMed, Google Scholar, and Biomed Central) from August 2020 to January 2021, based on the PRISMA guidelines. Literatures screened by two distinguished reviewers (Khan MS; Tareq SM), and resolved differences by consensus and further discussion with third reviewer based on requirements. Then selected the eligible 21 studies based on inclusion criteria’s. Two of the reviewers independently screened articles, extracted data for descriptive information and assessed risk of bias by using the Newcastle-Ottawa scale (NOS). Results: There is no article found with poor quality in NOS. The overall quality of the studies is high. There are strong association between ASD risk and some factors such as advanced maternal age, lead exposure during pregnancy and early childhood, blood Arsenic level of ASD children. Though few factors are related to increased risk of ASD; so far, no specific environmental factor has been found associated with increased risk of ASD with large power of study. Conclusion: There is appears to be a lack of such type of study in developing countries like Bangladesh. Therefore, nationwide widespread research needed to address the modifiable environmental risk factors for ASD.

Keywords: Environmental Factors, Autism Spectrum Disorders, Bangladesh

Introduction

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders commonly occur among males¹. ASD includes severe developmental disorders characterized by atypical socialization, restricted and repetitive behaviors, and interests². The global prevalence of ASD has been increasing over the past few decades³-⁷, and now it is estimated to be 1–3% in developed countries⁸-¹¹. In Bangladesh, 17 per 10,000 babies have ASD¹², where it is observed 1.5/1000 in another study (30/1000 in Dhaka city and 7/10,000 in rural area)¹³. Prevalence of the ASD at rural community in Bangladesh is found 0.75/1000 children (0.075%)¹³-¹⁵.

1. PhD fellow, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
2. Professor, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
3. Professor & Chairman, Department of Statistics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh

Correspondence to: Md. Shahid Khan, PhD fellow, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh. Email: khanpt9@gmail.com
ASD shows high heritability of ~80%\(^{16}\). Twin studies suggested that 80–90% of ASD is caused by heritable factors, while estimated 40–50% of variance is found by different environmental factors\(^{9,17}\). Besides, Hansen et al. found up to 40% rise in prevalence of ASD in Denmark due to yet unknown environmental causes\(^{18}\). Studies of environmental factors of ASD risk, compared to genetic studies, are in their infancy\(^{17}\), and inconclusive yet\(^{9,20}\).

Several environmental factors (pre-natal and post-natal) become a concern for ASD though it is largely a genetic disorder. Thus, factors affecting environment are contribute to the alteration of genes associated with ASD\(^{21}\). Numerous previous studies on environmental factors of ASD risk have been limited by small sample size, retrospective review or cross-sectional design, indirect measurement of exposure\(^{17}\). To prevent ASD, it is important to identify the modifiable environmental risk factors\(^{22}\) which will represent potential targets for environmental pollution reduction efforts to reduce the risk of ASD Development and severity. Besides, the prevalence of ASD has risen significantly in recent years though it is not properly prioritized in developing countries, like Bangladesh. The aim of this systematic review is to recapitulate the evidence from included studies regarding the socio-demographic factors and physical environmental factor exposures during prenatal and postnatal periods for ASD risk comparison to controls and to explore the real scenario in Bangladesh compared to other countries.

Methods

Search strategy: The authors searched literatures on Environmental Factors and ASD using the three electronic databases (PubMed and Google Scholar and Biomed Central) from August 2020 to January 2021 based on the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines\(^{23}\). The authors also gathered some additional records from other sources. The search was restricted to peer-reviewed full text Journal publications in English, related to Environmental Factors and Autism Spectrum Disorder. Study review and selection were completed independently by two distinguished reviewers (Khan MS & Tareq SM), with disagreements resolved through consensus and further discussion with third reviewer based on requirements.

Inclusion criteria: To persuade review requirements and reduce selection bias, articles were eligible if (1) observational (case-control, cohort) studies (having a valid comparison group); (2) participants birth date not before 1997; (3) only human studies; (4) minimum 50 ASD cases; (5) focus on potential socio-demographic and physical environmental factors exposure during prenatal and postnatal periods in association with ASD; (6) a study published from January 2011 to December 2020 to focus on recent research.

Exclusion criteria: Studies were excluded if (1) birth before 1997; (2) old data/ data taken before 1997; (3) cohort studies without control; (4) abstracts, thesis, case reports, comments, reviews, or conference proceedings.

Study selection and data extraction: All retrieved articles (286) were first organized by title. The titles and abstracts of all references were screened independently by key reviewer (Khan MS) after removing 37 duplicates, and a publication was excluded if the reviewers unanimously found that it did not meet the given eligibility criteria (Figure1). Tow of the reviewers reviewed full texts independently and the disagreement was resolved by discussion or consensus with the other reviewer. **Data synthesis:** Identified different environmental factors for ASD risk (association or data/percentage) were sorted by socio-demographic factors and physical environmental factor exposures during prenatal and postnatal periods for ASD risk comparison to controls and to explore the real scenario in Bangladesh compared to other countries.

Quality Assessment:

The risk of bias assessed using the Newcastle-Ottawa Scale (NOS) for evaluating the quality of included studies in this review\(^{25}\) and it is recommended by the Cochrane Collaboration & by a systematic review on 2015\(^{26,14}\). The NOS quality instrument is scored by awarding a star for each answer that is marked with an asterisk below\(^{27}\). Authors rated the quality of the studies (good, fair and poor) by awarding stars in each domain following the guidelines of the NOS\(^{28,29}\). Another rating that studies receive a score of 6 or above is considered as high quality for quality of strength\(^{30}\). Quality assessment was checked independently by two distinguished reviewers (Khan MS, Tareq SM), and any disagreements were solved by the third one.

Results

21 eligible studies were included in the present study using the PRISMA flow chart (Figure 1).
The characteristics of the included studies are sorted by publication year. The ages of samples were from two to 15 years, sample sizes ranged from 50 to 2961 participants for ASD cases and from 30 to 115632 for controls. All the studies were observational (case-control including two cohorts) in design and published during 2012-2020.

The study results are shortly summarized in Table 1. Quality scores for the studies, assessing risk of bias. 20 studies are of good quality where only one study is fair quality based on “good, fair, poor” rating of NOS. Additionally, the overall qualities of strength of the studies are high based on NOS rating (≥6), rated by Farsad-Naeimi et al. 24

Among the 21 eligible studies, 17 specifically assessed socio-demographic factors and 17 assessed physical environmental factors exposures during prenatal and postnatal periods. Screening tools (total 14 standard tools/scales) and records from existing databases or registered in special schools, hospitals/clinics were used, and Clinical/Physical Assessments were done in eight studies by experts to diagnose or rate the ASD.

Socio-demographic factors (shown in figure 2):

Parental age: Total 13 studies evaluated the parental age.

Seven out of 11 studies found positive association between maternal age and ASD risk. Advanced maternal age was strongly associated with increased ASD risk with OR of 1.13 (95% CI=1.05-1.20, p<0.001)31, with Matched Odds Ratio (MOR) = 3.13, 95% CI (1.41, 6.93, p<0.01)32, and with OR of 1.80 (95%CI: 1.27, 2.54, p=0.0008)33. Besides, advanced maternal age (30.3 to ≥35 years) during pregnancy was significantly associated with ASD risk, where ≥30 years were associated without significant. However, previous two studies found no association between maternal age and ASD compared to controls. Moreover, two studies found maternal age of ASD was same as controls. Advanced paternal age (≥30 years) was significant (p=0.01) with ASD risk and Rahbar et al. found it has very strong association with increased ASD risk [MOR = 2.54, 95% CI (1.34, 4.82, p<0.01)]32 compared to controls. However, advanced paternal age (≥30 years) at child’s birth was not significantly associated with ASD risk. Advanced parental age was significant among ASD cases, while Talbott et al., (2015a)
found it was in mixed pattern42.

Gender of ASD cases: Seven out of 16 studies found positive relations between male gender and ASD. Male gender was significantly associated with increased OR of ASD risk compared to controls (p<0.001, OR 3.95; 95% CI 2.82, 5.53)35, and with OR of 2.87 (95%CI= 1.67, 4.90)41. Several recent studies found significant or positive relations between male sex with ASD risk.31,36,40,43,44 However, very recent studies from USA and Jamaica found no significant/positive relations of male gender with ASD.2,30,32,34,37,38,39,42,45

Socioeconomic status (SES): Only three studies out of six found a positive association between higher SES and increased ASD risk compared to controls,30,41,32 in which opposite findings observed in other studies.31,35,40

Parental education: Four out of eight studies found positive relation between advanced level of maternal education and ASD risk compared to controls,2,41,32,39 where rest of the studies found opposite/mixed results.37,38,40,42 Only one study investigated paternal educational level and found positive trends.32 Parental advanced level of education at child birth has also significant relations with ASD risk compared to TD controls \{matched odds ratio (MOR) = 3.36, 95% CI (1.85, 6.10), \textit{p}<0.01\},32 and it was also significant in univariable analysis \textit{p}<0.01, \{MOR = 5.60, 95% CI (2.16, 14.50)\}.30

Race: Maternal race was significantly different \textit{p}<0.0001) between ASD and controls40. However, race/ethnicity of ASD was similar to controls in other studies39,44.

Physical environmental factors:

17 studies examined several physical environmental factors exposures such as: mercury, lead, arsenic, cadmium, zinc, copper, manganese, cyanide, air neurotoxicants, pesticides, vinyl flooring, air pollutants, sun light exposures, season of birth, and 25 endocrine disruptors, and these are demonstrated in figure 3.

Mercury: Two out of five studies revealed significant association between higher levels of blood mercury and ASD risk \textit{p}	extless0.001) compared to controls,46,47 in which it was not significant in recent studies.30,43,48
Lead: Sehgal et al. found significant/positive association between ASD in children and higher levels of lead, while Talbott et al. (2015a) stated that, ASD risk increases due to lead exposure during pregnancy, and lead exposure significantly increased ASD risk compared to controls during pregnancy and early childhood (p=0.001). However, Li et al. found, the level of blood lead was not considerably different between the two groups (p= 0.379).

Arsenic: The children with ASD were significantly associated with higher level of blood arsenic compared to controls. However, Sehgal et al. found the geometric mean blood arsenic levels were higher in controls compared to cases (p=0.01).

Cadmium: There was no significant association between cadmium exposure and ASD risk (p<0.05).

Zinc and Copper: Li et al. (2014) found significantly lower mean serum zinc levels in children with ASD (p<0.001). However, Sehgal et al. found it was higher in ASD case (p=0.02). Besides, mean serum copper levels were significantly higher in children with ASD compared to controls (p<0.001).

Manganese: No significant association was found between mean blood manganese concentrations (BMC) and ASD in univariable general linear model (GLM) analysis (p=0.29), or in adjusted multivariable GLM analysis (p=0.48).

Cyanide: Significant association was found between ASD risk and cyanide exposure (OR 1.32) during pregnancy for singleton births of interviewed cases only.

Four Air neurotoxicants (Styrene, chromium, methylene chloride, Polycyclic aromatic hydrocarbons (PAHs): The adjusted OR for higher levels of ambient styrene in living areas during pregnancy for the interviewed case-control analysis (OR 2.04; 95 % CI = 1.17–3.58, p=0.013) and for the birth certificates (BC controls) analysis (OR 1.61; 95 % CI = 1.08-2.40, p=0.018) were associated with increased risk of ASD. In the BC comparison, higher ambient levels of chromium also elevated OR of 1.60 (95 % CI = 1.08-2.38, p=0.020), and OR of 1.52 was for interviewed analysis (OR = 1.52, 95 % CI = 0.87–2.66). There were borderline ORs for the BC comparison for methylene chloride (OR = 1.41, 95 % CI = 0.96–2.07, p=0.082) and PAHs (OR = 1.44, 95 % CI = 0.98–2.11, p=0.064).

Highly used Pesticides: Pesticides exposure within 2000 m from the maternal residence during
prenatal and infantile period was associated with increased OR for ASD. Some pesticide substances exposure in the first year of life increased the odds for the ASD with ID by up to 50%.²

Vinyl flooring: Number of rooms with vinyl flooring during prenatal and early postnatal period (p= 0.16) was not significant among ASD compared to TD.³⁷

Four Air pollutants (PM₂.₅, PM₁₀, Ozone (O₃), and NO₂): Mid-pregnancy air pollution was not associated with any neurodevelopmental groups including ASD in resent study in the USA.³⁴ However, from three months before pregnancy through year two exposure to PM₂.₅ was associated with an approximate 50% increase risk of childhood ASD (p=0.046).³⁸

Sun light exposure: Duration of sun exposure/week was not significant with autistic children compared to controls (P = 0.49), and serum 25-hydroxy vitamin D has no significant correlations with the duration of sun exposure/week (P = 0.96)⁴⁹.

Maternal Smoking: Maternal smoking during pregnancy or in 3 months prior to pregnancy (24.6% of ASD and 10.5% of controls) was associated with ASD risk,³⁸ or mixed pattern between two group⁴². Moreover, percentage of maternal smoking during prenatal period was closer in both group (38.9% in ASD & 34.4% in control) (p=0.16).⁴⁰

Season of Birth: Season of birth (p=0.29) was not associated with ASD risk.⁴⁴

Others: Hamra et al. found no association between prenatal exposures to 25 endocrine disruptor chemicals (EDCs) and ASD, with OR of near 1.00 in both primary and secondary analysis.³⁹ However, higher level of IL-4 was associated with increased odds of severe ASD (OR=1.40, 95% CI, 1.03, 1.91), and IL-1β was associated with increased odds of mild/moderate ASD (OR= 3.02, 95% CI, 1.43, 6.38).⁴⁴

Discussion

Considering published literature, this study appears to be the first systematic review conducted in Bangladesh to appraise the environmental factors of ASD risk. The study findings are inconsistent. The figure 4 presents the environmental factors investigated by ≥3 studies. This review demonstrated the various associations between exposures and ASD, in which the potential exposures can be modified at the individual or societal level, and tried to explore the real scenario in Bangladesh compared to other countries.

Number of studies (≥3) on Environmental factors

Environmental factor	Count
Maternal Smoking	10
Arsenic (As)	9
Lead (Pb)	4
Mercury (Hg)	2
Advanced level of maternal education	3
Socioeconomic status (SES)	3
Male gender of ASD cases	3
Advanced paternal age	2
Advance maternal age	2

Figure 4. Number of studies (≥3) on Environmental factors

Socio-demographic factors: Most studies among 13 found positive association between advance parental age and ASD risk in this review. Relationships between male genders (k=16), and SES (k=6) with ASD risk found mixed results in the present review. There was positive relation between advanced level of maternal (four out of eight studies) education and ASD without
significant results, where race/ethnicity was inconclusive \((k=3)\) in this review. Stewart (2019) found that, detection of ASD is related with many socio-demographic variables (geographic location, race/ethnicity, and socio-economic status, maternal education and age at the time of child’s birth.\(^{50}\)

Physical environmental factors: This review found, Hg has less evidence with the development of ASD (two out of five studies) and this finding is similar to De Palma et al.\(^{51}\) Three out of four studies found significant association between ASD and lead exposure during pregnancy and early childhood, while two studies out of three found ASD was significant for level of blood arsenic in the present review. Wang et al. found in their SR & MA that, there is consistent evidence for inorganic arsenic (iAs) exposure, and inconsistent evidence of lead exposure for ASD risk.\(^{52}\)

Prenatal and infant exposure to several common ambient pesticides within 2000 m of their mother’s residence increase the offspring’s risk of ASD compared to controls \((k=1)\) in this study. Tessari et al. recommended that, a possible association between pesticides and ASD by some evidence, though it is not conclusive.\(^{53}\)

PM\(_{2.5}\) exposure from three months before pregnancy through year two was associated with increased risk of childhood ASD \((k=1)\) and mid-pregnancy air pollution exposures \((k=1)\) was not significant with ASD risk in this review.

In this review, BMC \((k=1)\), level of Cd exposure \((k=2)\), vinyl flooring during prenatal and early postnatal period and Phthalates in dust at house \((k=1)\), duration of sun exposure/week \((k=1)\), season of birth \((k=1)\) were not significant with ASD risk. Maternal smoking during pregnancy or in 3 months prior to pregnancy \((k=3)\) were inconclusive with ASD risk in the present review. However, De Palma et al. found limited evidence for cadmium exposures with ASD risk.\(^{51}\) Also, the total dust phthalate esters (PAEs) levels in schools and kindergartens were significantly higher than those in homes.\(^{54}\)

Serum copper levels were significantly higher in ASD \((k=1)\) where serum zinc levels \((k=2)\) were inconclusive in this study. Frye et al. stated that, ASD is associated with zinc deficiency both prenatally and postnatally, and also found lower prenatal and postnatal copper and copper-zinc ratio in children with ASD as compared with TD children.\(^{55}\) However, Bölte et al. stated that, altered zinc-copper cycles increase offspring vulnerability to ASD,\(^{56}\) and little evidence was found for ASD risk with hair metal concentration of copper in other study.\(^{51}\)

Only two EDCs \{Interleukin (IL)-1β and IL-4\} were associated with increased OR for severity of ASD in this review \((k=2)\). Cytokine profiles have complex roles in neurodevelopment, and dysregulated levels may be indicative of genetic differences and environmental exposures or their interactions that relate to ASD.\(^{44}\)

The strong association between ASD with pollutants in more recent years (2000–2013) indicates the uprising environmental pollutions in developed world\(^{57,58}\) as well as its serious alarming for developing countries like Bangladesh. Bangladesh has the most polluted air in the world and Dhaka is the second most polluted capital city. The density of airborne particulate matter (PM) has reached 247 micrograms per cubic metre (mcm) in Dhaka (five times more than acceptable level of 50 PM/mcm) set by the National Ambient Air Quality Standard (NAAQS) of Bangladesh\(^{59,60}\). Thus, to assess the role of environmental factors for the development of autism in Bangladesh, further studies are needed with larger sample size.

Strengths and limitations:

This is the first systematic review conducted in Bangladesh in this topic. A comprehensive search conducted in three relevant databases and gathered all potential investigated factors. The individual qualities of all studies are good except one study\(^{30}\) in NOS\(^{28,29}\) and the qualities of strength are also high \((≥6)\)\(^{24}\). However, many potential studies of environmental risk factors related to ASD excluded for this review due to exclusion criteria’s, which might have limited and negatively affected the number of references analyzed. In addition to, many studies were conducted in the USA \((k=9)\), pointing to a global research bias. Moreover, only one study was found in this review from Bangladesh.

Conclusion

This review suggests strong evidence \((k≥3)\) for advanced maternal age and advanced maternal education during pregnancy, lead exposure during pregnancy and early childhood with ASD risk. The present study demonstrates evidence for few socio-demographic and physical environmental factors.
<table>
<thead>
<tr>
<th>S/N</th>
<th>Author and publication year (ref No.)</th>
<th>Study population (country)</th>
<th>Study Design (observational)</th>
<th>Sample size</th>
<th>Study population birth year/ age (year)</th>
<th>Environmental Exposures/ interventions</th>
<th>Exposure time</th>
<th>Main findings/outcomes</th>
<th>Quality of strength in NOS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Volk et al. 2020</td>
<td>USA</td>
<td>CC**</td>
<td>414</td>
<td>January 2000 to June 2003</td>
<td>Air pollutants: PM2.5, PM10, ozone (O3), and NO2</td>
<td>Prenatal during pregnancy</td>
<td>NDD was not associated with mid-pregnancy air pollution. Only IL-6 associated with ASD with ID even after adjusting for air pollution exposure.</td>
<td>High</td>
</tr>
<tr>
<td>2</td>
<td>Gil-Hernández et al. 2020</td>
<td>Córdoba, Spain</td>
<td>CC**</td>
<td>54/54</td>
<td>2-6 years</td>
<td>Mercury (Hg)</td>
<td>Not reported</td>
<td>No correlations between Hg in hair and Urine concentrations in the ASD group</td>
<td>High</td>
</tr>
<tr>
<td>3</td>
<td>Maia et al. 2019</td>
<td>Brazil</td>
<td>CC**</td>
<td>253/886</td>
<td>2-15 years</td>
<td>Birth to present age.</td>
<td></td>
<td>Advanced maternal age, and male gender were significantly associated with ASD.</td>
<td>High</td>
</tr>
<tr>
<td>4</td>
<td>Hanra et al. 2019</td>
<td>California, USA</td>
<td>CC**</td>
<td>491 ASD, 155 ID, 73 controls</td>
<td>January 2000 to June 2003, (4-9 years)</td>
<td>25 endocrine disruptor chemicals</td>
<td>Prenatal</td>
<td>No association found between endocrine disruptor chemicals exposures and ASD.</td>
<td>High</td>
</tr>
<tr>
<td>5</td>
<td>Sehgal et al. 2019</td>
<td>Northern India.</td>
<td>CC**</td>
<td>60/60</td>
<td>3-12 years</td>
<td>Blood Heavy Metal (Hg, Pb, Zn, As, Cd)</td>
<td>Before, during pregnancy and postnatal</td>
<td>No significant association between exposure and ASD.</td>
<td>High</td>
</tr>
<tr>
<td>6</td>
<td>von Ehrenstein et al. 2019</td>
<td>California (USA)</td>
<td>CC**</td>
<td>2961/10 35, 370</td>
<td>1998-2010</td>
<td>11 highly used pesticides within 2000 m from the maternal residence</td>
<td>Prenatal and infant</td>
<td></td>
<td>Pesticides exposure associated with increased OR for ASD.</td>
</tr>
<tr>
<td>7</td>
<td>Soke et al. 2019</td>
<td>USA</td>
<td>CC**</td>
<td>673/876</td>
<td>2.5-5.75 years (30-68 months)</td>
<td>Prenatal and Postnatal factors</td>
<td>430/697</td>
<td>Maternal race was different between ASD and controls.</td>
<td>High</td>
</tr>
<tr>
<td>8</td>
<td>Oommen et al. 2018</td>
<td>Northern and Eastern regions, KSA</td>
<td>CC**</td>
<td>100/100</td>
<td>3-10 years</td>
<td>Socio-demographic data and social history</td>
<td>Prenatal to postnatal periods</td>
<td>Maternal age during pregnancy was weakly associated with increased OR for ASD.</td>
<td>High</td>
</tr>
<tr>
<td>9</td>
<td>Li H et al. 2018</td>
<td>Han ethnics, China</td>
<td>CC**</td>
<td>180/184</td>
<td>3-8 years</td>
<td>Hg, As, Cd, Pb</td>
<td>Not reported</td>
<td>ASD children had significantly higher levels of Hg and As and a lower level of Cd, while Pb was not significantly different between the two groups.</td>
<td>High</td>
</tr>
<tr>
<td>10</td>
<td>Krakowiak et al. 2017</td>
<td>California, USA</td>
<td>CC**</td>
<td>214 ASD, 62 TD, and 27 DD as control</td>
<td>2–5 years</td>
<td>17 cytokines and chemokines of neonatal blood</td>
<td>Not reported</td>
<td>Race/ethnicity, season of Birth was not significant, male gender was significant. Higher level of IL-4 & IL-1β was associated with increased odds of ASD.</td>
<td>High</td>
</tr>
<tr>
<td>11</td>
<td>Talbott et al. 2015a</td>
<td>Southwestern Pennsylvania, USA</td>
<td>CC**</td>
<td>Analytic group (217/224), BC controls (216/4,971)</td>
<td>January 2005 to December 2009</td>
<td>30 air neurotoxicants</td>
<td>Pregnancy, first and second year of life</td>
<td>Living in areas with higher levels of styrene and chromium during pregnancy was associated with increased risk of ASD</td>
<td>High</td>
</tr>
<tr>
<td>12</td>
<td>Khanom et al. 2015</td>
<td>Dhaka city, Bangladesh</td>
<td>CC**</td>
<td>99/198</td>
<td>5-7 years</td>
<td>Socio-demographic data and Gestational Diabetes Mellitus (GDM)</td>
<td>During pregnancy</td>
<td>ASD had significantly older parents and higher socioeconomic status.</td>
<td>High</td>
</tr>
<tr>
<td>13</td>
<td>Philippat et al. 2015</td>
<td>California, US</td>
<td>CC**</td>
<td>50 ASD, 27 DD, 68 TD</td>
<td>2-5 years</td>
<td>Phthalate concentrations in house dust</td>
<td>Pre- and early postnatal</td>
<td>Phthalates in dust were not associated with ASD.</td>
<td>High</td>
</tr>
</tbody>
</table>
with ASD risk, lack of large-scale study especially in developing countries like Bangladesh indicate to a critical need of further nationwide extensive research to address the modifiable environmental risk factors for better clinical recommendation and management.

Acknowledgement: The authors would like to thank all academic and clinical staff for their expertise and assistance throughout this review.

Conflict of interest: None declared.

Ethical issue: As this study was done based on secondary data, no ethical approval was needed.

Contribution of authors: The authors were involved equally in literature search, review, compilation, manuscript writing, revision and finalizing.

References

<table>
<thead>
<tr>
<th></th>
<th>Study Reference</th>
<th>Country</th>
<th>Study Design</th>
<th>Study Size</th>
<th>Follow-up</th>
<th>Exposure</th>
<th>Outcome</th>
<th>Quality of strength</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Talbott et al. 2015b</td>
<td>Southwestern Pennsylvania, USA</td>
<td>CC**</td>
<td>217/226</td>
<td>January 2005 to December 2009</td>
<td>Fine particulate matter (PM₁₀)</td>
<td>Prenatal and early childhood</td>
<td>Both prenatal and postnatal exposures to pm₁₀ associated with increased OR for ASD risk.</td>
<td>High</td>
</tr>
<tr>
<td>15</td>
<td>Rahbar et al. 2014</td>
<td>Jamaica</td>
<td>CC**</td>
<td>109/109 TD</td>
<td>2–8 years</td>
<td>Blood manganese concentrations (BMC)</td>
<td>Not reported</td>
<td>No significant association between mean BMC in ASD</td>
<td>High</td>
</tr>
<tr>
<td>16</td>
<td>Li SO et al. 2014</td>
<td>China</td>
<td>CC**</td>
<td>60/60</td>
<td>January 2011 to December 2013</td>
<td>Zn and Cu</td>
<td>Not reported</td>
<td>The significant lower mean serum Zn levels, and higher mean serum Cu levels found in ASD.</td>
<td>High</td>
</tr>
<tr>
<td>17</td>
<td>Alabdali et al. 2014</td>
<td>Saudi Arabia</td>
<td>CC**</td>
<td>52/30</td>
<td>3–12 years</td>
<td>Toxic heavy metals: Pb and Hg</td>
<td>Pregnancy and early childhood</td>
<td>Hg and Pb levels significantly associated with ASD.</td>
<td>High</td>
</tr>
<tr>
<td>18</td>
<td>Maramara et al. 2014</td>
<td>New Jersey, USA</td>
<td>Cohort (CC**)</td>
<td>268/115632</td>
<td>1998-2006</td>
<td>14 pre- and perinatal risk factors</td>
<td>Prenatal and perinatal</td>
<td>Advanced maternal age (≥35 years) was significantly higher among ASD.</td>
<td>High</td>
</tr>
<tr>
<td>19</td>
<td>Mamidala et al. 2013</td>
<td>India</td>
<td>Cohort (CC**)</td>
<td>192/471</td>
<td>Under 10 years</td>
<td>25 Prenatal, perinatal and neonatal risk factors</td>
<td>Prenatal, perinatal and neonatal</td>
<td>Advanced maternal age significantly associated with increased OR for ASD.</td>
<td>High</td>
</tr>
<tr>
<td>20</td>
<td>Rahbar et al. 2013</td>
<td>Jamaica</td>
<td>CC**</td>
<td>65/65</td>
<td>2–8 years</td>
<td>Blood Hg level</td>
<td>Early Childhood</td>
<td>Geometric mean blood Hg concentrations was not associated with increased OR for ASD.</td>
<td>High</td>
</tr>
<tr>
<td>21</td>
<td>Mostafa GA & AL-Ayadhi LY. 2012</td>
<td>Riyadh, KSA</td>
<td>CC**</td>
<td>50/30</td>
<td>5–12 years</td>
<td>25-hydroxy vitamin D</td>
<td>Not reported</td>
<td>Lower serum levels of 25-hydroxy vitamin D significantly associated with ASD risk.</td>
<td>High</td>
</tr>
</tbody>
</table>

Quality of strength in Newcastle–Ottawa Scale (NOS). **CC = Case-Control

42. Talbott EO, Marshall LP, Rager JR, Arena VC, Sharma RK, Stacy SI. Air toxics and the risk of autism spectrum disorder: the results of a population based case–control study in southwestern Pennsylvania.

