Original article:

Lymphocyte subsets and their association with the severity of patients with major depressive disorder (mdd)

Noor Suryani Mohd Ashari^{1*}, Siti Nor Fairus Mohamed Sanusi¹, Mohd Azhar Mohd Yasin², ,Rohimah Mohamud¹, Che Maraina Che Hussin¹

Abstract

Background: Major depressive disorder (MDD) has been associated with dysregulation of the immune system. While many studies on activation of innate immune response currently dominates the research area, the dysregulation in adaptive immune system especially in circulating lymphocyte subsets has rarely been explored. Some studies suggested that the severity of MDD is importance with respect to the extent of the immune changes in MDD patients. Objectives: This study aims to compare the percentage and absolute count of T helper cells (CD4⁺ T cells), T cytotoxic cells (CD8⁺ T cells), natural killer cells (CD16⁺ 56⁺ NK cells) and B cells (CD19⁺ B cells) between MDD patients and healthy controls and their association with the severity of the disease. Materials and methods: This study involved 47 MDD patients and 47 healthy controls. MDD patients were diagnosed according to Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) criteria, and the severity of MDD was assessed using Beck Depression Inventory. Ten ml of peripheral blood were drawn from each subject. The percentage and absolute count of each lymphocyte subsets were determined using immunophenotyping method by using flow cytometry. The statistical analysis was done using Mann-whitney test and Kruskal-Wallis non-parametric test. Results and discussion: The results showed that there were no significant difference in the percentage and absolute count of T helper cells (p=0.148; p=0.190), T cytotoxic cells (p=0.316; p=0.783), NK cells (p=0.731; p=0.530), and B cells (p=0.136; p=0.148) between MDD patients and healthy controls. The percentage and absolute count of the lymphocyte subsets were also not significantly associated with the severity of MDD. Conclusion: There were no significant difference in the percentage and absolute count of lymphocytes subsets between MDD patients and healthy controls. The percentage and absolute count of the lymphocyte subsets were also not significantly associated with the severity of MDD. In conclusion, there were no alterations of lymphocyte subsets in our MDD patients

<u>Keywords:</u> major depressive disorder, dysregulation, lymphocyte subsets, percentage, absolute count

International Journal of Human and Health Sciences Vol. 03 No. 02 April'19 Page : 80-87 DOI: http://dx.doi.org/10.31344/ijhhs.v3i2.81

INTRODUCTION

Major Depressive Disorder (MDD) is the most common mental disorder reported in Malaysia¹ and it is forecasted to become the second leading cause of worldwide disabilities by the year 2020². Nowadays, MDD is not only recognized as one of the major psychiatric diseases, but is also associated with immune system disorder^{3,4}. Since the past two decades, many characteristics of immune dysregulation have been reported in

patients with MDD 5-7.

There has been increasing interest in the role of an immune response and inflammation in the development of MDD. Intriguing data showed that the impairment of immune system in MDD were not only reflected by the alteration of inflammatory cytokines level, but also by the changes in the level of various lymphocytes subsets⁶.

The positive findings of these lymphocyte subsets

- 1. Department of Immunology
- 2. Department of Psychiatry, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan

<u>Correspondence to:</u> Noor Suryani Mohd Ashari, Department of Immunology, School of Medical Sciences, , Health Campus, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan. Email: suryani@usm.my

are important to determine the pathophysiology of MDD. Decreases in the number of the relevant T cell subset may directly contribute to the development and maintenance of MDD. Enhancement of the relevant lymphocyte subset may represent an interesting and novel approach for the treatment of this disorder.

However, there were only few studies done on the lymphocyte subsets in MDD and showed contradictory results. In addition, most of the studies were done more than a decade ago. New data with better technologies are needed to confirm the finding. No study has been done regarding the association of lymphocyte subset with the severity of MDD. The association between lymphocytes subsets and disease severity are important as they might be considered as biomarkers of severe MDD. Therefore, this study was conducted to evaluate a wide range of lymphocyte subsets including T helper cells (CD4+T cells), T cytotoxic cells (CD8+T cells), B cells (CD19+B cells), and NK cells (CD16+56+NK cells) in MDD patients and compared them with healthy controls. This study was also done to evaluate the association of these lymphocyte subsets with the severity of MDD.

METHODOLOGY

Subjects Recruitment and Assessment

A total of 47 MDD patients and 47 healthy controls were included into this study. MDD patients were recruited from outpatients Psychiatric Clinic, Hospital Universiti Sains Malaysia. MDD patients were diagnosed according to Diagnostic and Statistical Manual of Mental Disorder 5 (DSM-5) criteria8. Patients were excluded if they met one or more of the following criteria: presence of other psychiatric illness, autoimmune diseases, allergic diseases, neoplastic or endocrine diseases, current pregnancy, acute or chronic infection within the past month and immunocompromised or immunosuppressed patients. The severity of MDD patients were assessed using Beck Depression Inventory (BDI)⁹ at the time of recruitment. The total BDI score is calculated by summing up the 21 items. A total score of 0-10 is considered as normal depression, 11-20 indicates mild depression, 21-30 indicates moderate depression

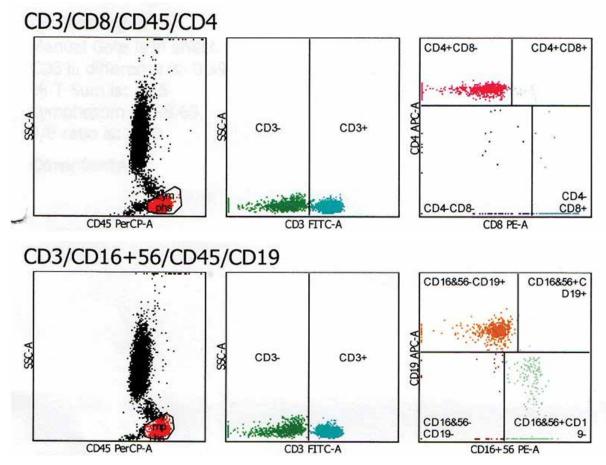


Figure 1 Gating strategy used to identify total T cells (CD3+), T helper cells (CD4+), T cytotoxic cells (CD8+), B cells (CD19+), and NK cells (CD16+ 56+)

and 31 and above indicate severe depression Healthy controls were recruited from hospital employees and students that were in good general health and had no history of MDD. All eligible subjects were asked to complete Depression Anxiety Scoring System (DASS 21) questionnaire to ensure that they were in good general health and had no depressive symptoms.

This study was approved by Research and Ethics Committee, Universiti Sains Malaysia. After study procedures had been fully explained, written informed consent was obtained from all participants.

Immunophenotying of Lymphocyte Subsets

10 ml of peripheral blood were collected from each MDD patients and healthy controls. The peripheral blood was stored in an EDTA tube and processed within 2 to 4 hours of blood withdrawal. Complete blood count was performed using SYSMEX XS-800i Hematology Automated Analyzer. For immunophenotyping of the lymphocytes subsets, the blood samples were stained with monoclonal antibodies, MultitestTM IMK Kit from BD Biosciences, USA. In brief. 50 µl of whole blood were mixed and incubated for 15 minutes with 20 µl of each monoclonal antibody combination CD3/CD8/CD45/CD4 antibodies and CD3/CD16CD56/CD45/CD19 antibodies in separate tube. The red blood cells were lysed by adding 450uL of 1X lysing solution. The tubes were vortexed and incubated in the dark at room temperature for another 15 minutes. The sample were then analysed using flow cytometer with BD FACSCanto[™] software to determine the percentage and absolute count of total T cells (CD3⁺ T cells), T helper cells (CD4⁺ T cells), T cytotoxic cells (CD8⁺ T cells), B cells (CD19⁺ B cells), and NK cells (CD16⁺ 56⁺ NK cells). The flow cytometric gating strategies used in this study are shown in Figure 1.

Statistical Analysis

Statistical analysis was performed using IBM SPSS Statistics version 22 software. Since the data were not normally distributed, non-parametric test were applied for all statistical analysis. The percentage and absolute count of lymphocyte subsets between MDD patients and healthy controls were compared using Mann-Whitney test. While, the percentage and absolute count of lymphocyte subsets between different severity of MDD were compared using Kruskal-Wallis test. The result was statistically significant if p value was less than 0.05 (p<0.05).

RESULTS AND DISCUSSION

Table 1 summarizes the demographic data for 47 MDD patients and 47 controls subject in this study. The mean age of MDD patients and healthy control were 39.7 years old and 28.0 years old; respectively. In MDD group, 61.7% were females and 38.3% were males, while in healthy control, 68.1% were females and 31.9% were males. Majority of MDD patients and healthy controls were Malays which merely reflects the racial distribution in Kelantan, where majority of the population are Malay ethnicity

Table 1: Demographics data of MDD patients and controls

	Control	MDD	
	n (%)	n (%)	
Age (years)			
Mean (S.D.)	27.96 (8.69)	39.72 (13.07)	
Sex	•		
Male	15 (31.9)	18 (38.3)	
Female	32 (68.1)	29 (61.7)	
Race			
Malay	45 (95.7)	45 (95.7)	
Chinese	2 (4.3)	2 (4.3)	
Indian	0 (0.0)	0 (0.0)	

Table 2: The percentage and absolute count of lymphocyte subsets

	MDD (n=47) Median (IQR)	Healthy control (n=47)	Z statistics	<i>p</i> -value
		Median (IQR)		
Total Lymphocyte Count (cell/µl)	2500 (700)	2400 (1000)	-0.667	0.505
Total T cells (CD3+ T cells)		1		ļ
Percentage (%)	67.14 (10.18)	66.92 (8.67)	-0.548	0.584
Absolute count (cells/μl)	1652 (517)	1696 (636)	-0.072	0.943
T helper (CD4 ⁺ T cells)				
Percentage (%)	36.47 (7.82)	34.61 (8.63)	-1.448	0.148
Absolute count (cells/μl)	931 (376)	836 (326)	-1.312	0.190
T cytotoxic (CD8+ T cells)				
Percentage (%)	27.12 (10.06)	27.65 (8.88)	-1.002	0.316
Absolute count (cells/μl)	688 (371)	681 (265)	-0.276	0.783
NK cells (CD16 ⁺ CD56 ⁺ NK cells)]		
Percentage (%)	18.26 (10.82)	17.61 (9.15)	-0.344	0.731
Absolute count (cells/μl)	475 (241)	415 (244)	-0.628	0.530
B cells (CD19 ⁺ B cells)]		<u> </u>
Percentage (%)	15.36 (6.60)	13.54 (5.41)	-1.490	0.136
Absolute count (cells/μl)	377 (190)	345 (208)	-1.448	0.148

Median percentage and absolute count of lymphocyte subsets in MDD patients and healthy controls are shown in Table 2. The median percentage and absolute count of total lymphocytes, total T cells, T helper cells, T cytotoxic cells, NK cells and B cells in healthy controls were within the normal range of healthy adult of Asian population¹⁰. This validated the results obtained in this study.

In the present study, we did not observe any significant differences in the total number of circulating lymphocytes between MDD patients and healthy controls. The findings were consistent with previous study by Li et al.¹¹ which indicated no significant differences in total number of lymphocytes between MDD patients and healthy controls. They concluded that the immune imbalance of MDD was related to dysregulation

of different subsets of lymphocytes, instead of the whole peripheral lymphocyte population.

Previous studies reported reduced T cell number and percentage in patient with MDD^{6,12,13}, however our study did not detect any significant differences in the absolute count or percentage of total T cell between MDD patients and healthy controls. Our result was supported by Hosseini et al. ¹⁴ which also did not find any significant difference in the absolute count of total T cells between MDD patients and healthy controls.

We also did not observed any significant differences in the percentage or absolute count of T helper cells between MDD patients and healthy controls which are consistent with studies done by Roberson et al. ¹⁵ and Basterzi et al. ¹⁶. However, the finding was in contrast with previous studies by Zorrilla et al. ¹³ and Miller ⁶ which reported lower

percentage and absolute count of T helper cells in MDD patients compared with healthy controls.

NK cell counts and activity in MDD patients have been determined in a number of studies, but with divergent or even conflicting results. While some studies found reduced numbers of NK cells¹⁷⁻¹⁹, other studies observed an increased²⁰ or no differences in the percentage and absolute count of NK cells between MDD patients and healthy controls^{14, 21}. In this study, we found no significant difference either in the percentage or absolute count of NK cells between MDD patients and healthy controls.

Our result showed that the percentage and absolute counts of B cell in MDD patients did not differ from healthy controls. The investigation of B cell numbers also has yielded contradictory results, Maes et al. ²² found a significantly increased number of B cells, Schleifer et al. ¹² detected a lower B cell numbers, while other authors were unable to find any alterations in B cell numbers during depression ^{14, 23-25}.

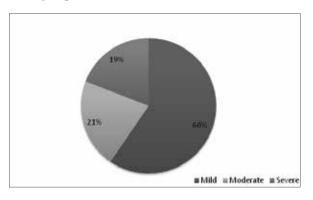


Figure 2: The severity of MDD patients based on BDI scale

Based on BDI scale, 28 (60%) patient were mild, 10 (21%) patients were moderate and 9 (19%) patients were severe MDD (Figure 2). Table 3 shows the median percentage and absolute count of lymphocyte subsets in mild, moderate and severe MDD. This present study showed that there were no significant differences in the percentage and absolute count of T cells, T helper cells, T cytotoxic cells, NK cells, and B cells between mild, moderate and severe MDD (p>0.05). Our findings are in accordance with previous study by Hosseini et al. 14 who also did not find any significant differences in total absolute count of NK cells, B cells and T cells among healthy controls, moderate and severe MDD patients. However, Maes et al. 26 found a significantly

decreased NK cell number and activity in severely depressed subjects. We also observed a decreasing trend in median percentage and absolute count of NK cells with increasing severity of MDD, but the differences did not reach statistical significance. This could be due to the small sample size within each severity group especially in severe patients. In general, the results concerning the lymphocyte subsets in MDD patients have been contradictory and controversial. There are several factors that might be responsible for this phenomenon. One explanation for this could be that most of the previous studies determined the number of lymphocyte cells after separation of mononuclear cells, whereas we determined lymphocyte subsets in the whole blood. Previous study showed lower counts were obtained for total T, T helper and T cytotoxic cells after mononuclear cell isolation²⁷. It has been suggested that modulating factors such as the biological and environmental factors also might be responsible for the results variation. Various types of biological rhythms may exert influences on lymphocyte subsets. For example, ultradian rhythms can caused a decline in total numbers of lymphocytes in the peripheral blood at numerous time points during a day and within the lymphocyte population, T cells may be decreased by as much as 50% ^{28,29}. Hence, to minimize the effects of ultradian rhythm on the lymphocyte subsets count, all blood samples were collected within 8.00 am to 12.00 pm.

The distribution of lymphocyte subsets in peripheral blood can also be altered by exercise. Exercise decreases the number of total T cells and T helper cells in peripheral blood while increasing the percentage of NK cells. After cessation of vigorous exercise, the number of T helper cells return to normal within 2 hours, whereas the NK cell numbers return to baseline only after 24 hours³⁰. Other study suggested that T cytotoxic cells count also is increased by vigorous physical activity³¹.

Light to heavy cigarette smoking can also alter both total count and percentage of lymphocytes. Among the subsets, decrease percentages of T helper cells with increased T cytotoxic cells have been reported³². Tollerud and colleagues reported that the number of NK cells is reduced in the smoker's blood³³. In addition, environmental factors also can cause variation in the lymphocyte subsets count. The exposure to persistent environmental pollutant such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) caused a significant decreased in

Table 3: The association of lymphocyte subsets with the severity of MDD

	Severity of MDD	Median (IQR)	χ² stat ^a (df)	<i>p</i> -value
T cells (CD3+ T cells)				
Percentage	Mild	63.27 (9.91)	3.918 (2)	0.141
(%)	Moderate	67.74 (5.11)		
	Severe	70.32 (14.94)		
Absolute counts	Mild		0.211 (2)	0.900
(cells/µl)	Moderate	1625 (696)		
	Severe	1733 (729)		
T helper (CD4 ⁺ T cells)				•
Percentage	Mild	35.98 (8.74)	1.908 (2)	0.385
(%)	Moderate	34.85 (9.05)		
	Severe	38.29 (11.43)		
Absolute counts	Mild	949 (381)	0.682 (2)	0.711
(cells/µl)	Moderate	844 (403)		
	Severe	895 (500)		
T cytotoxic (CD8+ T cells)				
Percentage	Mild	26.90 (6.52)	0.416 (2)	0.812
(%)	Moderate	27.87 (4.32)		
	Severe	28.58 (13.74)		
Absolute counts	Mild	670 (322)	0.012 (2)	0.994
(cells/µl)	Moderate	761 (336)		
	Severe	714 (601)		
NK cells (CD16+ CD56+ NK cells			_	
Percentage	Mild	18.79 (5.36)	3.091 (2)	0.213
(%)	Moderate	17.78 (12.34)		
	Severe	13.72 (14.13)		
Absolute counts	Mild	525 (296)	3.618 (2)	0.164
(cells/µl)	Moderate	484 (263)		
	Severe	357 (336)		
B cells (CD19 ⁺ B cells)		<u> </u>		
Percentage	Mild	15.72 (6.96)	0.374 (2)	0.830
(%)	Moderate	14.88 (4.57)		
	Severe	15.70 (9.87)		
Absolute counts	Mild	441 (192)	1.495 (2)	0.473
(cells/µl)	Moderate	358 (276)		
	Severe	345 (160)		

the percentage of total T and T helper cells as well as an increased in the percentage of T cytotoxic cells³⁴.

CONCLUSION

There were no significant differences in the percentage and absolute count of T helper cells, T cytotoxic cells, NK cells, and B cells between MDD patients and healthy controls. The result also showed that the percentage and absolute count of T helper cells, T cytotoxic cells, NK cells, and B cells were not significantly associated with the severity of MDD. In conclusion, there were

no alterations of lymphocyte subsets in our MDD patients.

Ethical approval: The study was supported by a Short Term Grant (304/PPSP/61313069) from Universiti Sains Malaysia

Conflict of interest: none

Acknowledgement: We are grateful to Lecturers and Staffs at Department of Immunology, Doctors and Nurses at Psychiatric Clinic, Hospital Universiti Sains Malaysia for their assistance throughout this study.

References

- Mukhtar F, Oei TPS. A Review on The Prevalence of Depression in Malaysia. Current Psychiatry Reviews. 2011;7(3): 234-238
- World Health Organization. Depression. https:// www.Who.Int/Mediacentre/Factsheets/Fs369/En/ (2016, accessed 14 June 2016).
- 3. Irwin MR, Miller AH. Depressive Disorders and Immunity: 20 Years of Progress and Discovery. Brain, Behavior, and Immunity. 2007;21(4): 374-383.
- Benton T, Staab J, Evans DL. Medical Co-Morbidity in Depressive Disorders. Annals of Clinical Psychiatry. 2007;19(4): 289-303
- Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctôt KL. A Meta-Analysis of Cytokines in Major Depression. Biological Psychiatry. 2010;67(5): 446-457.
- Miller AH. Depression and Immunity: A Role for T Cells? Brain, Behavior, and Immunity. 2010;24(1): 1-8.
- Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 Cytokine Alterations in Major Depression. Journal of Affective Disorders. 2005;88(2): 167-173
- Arlington V. Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-V). USA: American Psychiatric Pub. 2013.
- 9. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh

- J. An Inventory for Measuring Depression. Archives of General Psychiatry. 1961;4(6): 561-571.
- 10. Chng WJ, Tan GB, Kuperan P. Establishment of Adult Peripheral Blood Lymphocyte Subset Reference Range for an Asian Population by Single-Platform Flow Cytometry: Influence of Age, Sex, and Race and Comparison with Other Published Studies. Clin Vaccine Immunol 2004;11(1),168-173.
- Li Y, Xiao B, Qiu W, Yang L, Hu B, Tian X, Yang H. Altered Expression of CD4+ CD25+ Regulatory T Cells and Its 5-HT 1a Receptor in Patients with Major Depression Disorder. Journal of Affective Disorders. 2010;124(1): 68-75
- Schleifer SJ, Keller SE, Meyerson AT, Raskin MJ, Davis KL, Stein M. Lymphocyte Function in Major Depressive Disorder. Archives of General Psychiatry. 1984;41(5): 484-486.
- Zorrilla EP, Luborsky L, Mckay JR, Rosenthal R, Houldin A, Tax A, Schmidt K.The Relationship of Depression and Stressors to Immunological Assays: A Meta-Analytic Review. Brain, Behavior, and Immunity. 2001;15(3): 199-226.
- Hosseini RF, Azad FJ, Talaee A, Miri S, Mokhber N, Hosseini FF, Mohammadi M. Assessment of The Immune System Activity in Iranian Patients with Major Depression Disorder (MDD). Iran J Immunol. 2007;4(1): 38-43.
- 15. Robertson M, Schacterle R, Mackin G, Wilson S,

- Bloomingdale K, Ritz J, Komaroff A. Lymphocyte Subset Differences in Patients with Chronic Fatigue Syndrome, Multiple Sclerosis and Major Depression. Clinical & Experimental Immunology. 2005;141(2): 326-332.
- 16. Başterzi AD, Yazici K, Buturak V, Çimen B, Yazici A, Eskandari G, Taşdelen B. Effects of Venlafaxine and Fluoxetine on Lymphocyte Subsets in Patients with Major Depressive Disorder: A Flow Cytometric Analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2010;34(1): 70-75.
- 17. Evans DL, Folds JD, Petitto JM, Golden RN, Pedersen CA, Corrigan M, Ozer H. Circulating Natural Killer Cell Phenotypes in Men and Women with Major Depression: Relation to Cytotoxic Activity and Severity of Depression. Archives of General Psychiatry. 1992;49(5): 388-395.
- Andreoli AV, Keller SE, Rabaeus M, Marin P, Bartlett JA, Taban C. Depression and Immunity: Age, Severity, and Clinical Course. Brain, Behavior, and Immunity. 1993;7(4): 279-292.
- Schleifer SJ, Keller SE, Bartlett JA, Eckholdt HM, Delaney BR. Immunity in Young Adults with Major Depressive Disorder. American Journal of Psychiatry. 1996;153(4): 477-482.
- Ravindran AV, Griffiths J, Merali Z, Anisman H. Lymphocyte Subsets Associated with Major Depression and Dysthymia: Modification by Antidepressant Treatment. Psychosomatic Medicine. 1995;57(6): 555-563.
- 21. Maes M, Lambrechts J, Suy E, Vandervorst C, Bosnians E. Absolute Number and Percentage of Circulating Natural Killer, Non-MHC-Restricted T Cytotoxic, and Phagocytic Cells in Unipolar Depression. Neuropsychobiology. 1994;29(4): 157-163.
- 22. Maes M, Stevens W, Declerck L, Bridts C, Peeters D, Schotte C, Cosyns P . A Significantly Increased Number and Percentage of B Cells in Depressed Subjects: Results of Flow Cytometric Measurements. Journal of Affective Disorders. 1992;24(3): 127-134.
- 23. Sengar D, Waters BG, Dunne J, Bouer I. Lymphocyte Subpopulations and Mitogenic Responses of Lymphocytes in Manic-Depressive Disorders. Biological Psychiatry. 1982;17(9);1017-1022.
- Darko DF, Lucas AH, Gillin JC, Risch SC, Golshan S, Hamburger RN, Janowsky DS. Cellular Immunity and The Hypothalamic-Pituitary Axis in Major Affective Disorder: A Preliminary Study. Psychiatry Research. 1988;25(1): 1-9.
- 25. Evans DL, Pedersen CA, Folds JD. Major Depression

- and Immunity: Preliminary Evidence of Decreased Natural Killer Cell Populations. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 1988;12(5): 739-748.
- Maes M, Stevens W, Peeters D, Declerck L, Scharpe S, Bridts C, Cosyns P. A Study on The Blunted Natural Killer Cell Activity in Severely Depressed Patients. Life Sciences. 1992;50(7): 505-513.
- 27. Levering WH, Van Wieringen WN, Kraan J, Van Beers WA, Sintnicolaas K, Van Rhenen DJ, Gratama JW. Flow Cytometric Lymphocyte Subset Enumeration: 10 Years of External Quality Assessment in The Benelux Countries. Cytometry Part B: Clinical Cytometry. 2008;74(2): 79-90.
- Lévi F, Canon C, Blum JP, Reinberg A, Mathé G. Large-Amplitude Circadian Rhythm in Helper: Suppressor Ratio of Peripheral Blood Lymphocytes. The Lancet. 1983;322(8347): 462-463.
- Ritchie A, Oswald I, Micklem HS, Boyd JE, Elton RA, Jazwinska E, and et al.. Circadian Variation of Lymphocyte Subpopulations: A Study with Monoclonal Antibodies. Br Med J (Clin Res Ed). 1983;286(6380): 1773-1775.
- 30. Tvede N, Kappel M, Halkjoer-Kristensen J, Galbo H, Pedersen B. The Effect of Light, Moderate and Severe Bicycle Exercise on Lymphocyte Subsets, Natural and Lymphokine Activated Killer Cells, Lymphocyte Proliferative Response and Interleukin 2 Production. International Journal of Sports Medicine. 1993;14(05): 275-282.
- 31. Brahmi Z, Thomas JE, Park M, Park M, Dowdeswell IR. The Effect of Acute Exercise on Natural Killer-Cell Activity of Trained and Sedentary Human Subjects. Journal of Clinical Immunology. 1985;5(5): 321-328.
- 32. Miller LG, Goldstein G, Murphy M, Ginns LC. Reversible Alterations in Immunoregulatory T Cells in Smoking: Analysis by Monoclonal Antibodies and Flow Cytometry. Chest. 1982;82(5): 526-529
- 33. Tollerud DJ, Clark JW, Brown LM, Neuland CY, Mann DL, Pankiw-Trost LK, Hoover RN. Association of Cigarette Smoking with Decreased Numbers of Circulating Natural Killer Cells. Am Rev Respir Dis. 1989;139(1): 194-198.
- 34. Ciftci O, Tanyildizi S, Godekmerdan A. Curcumin, Myrecen and Cineol Modulate The Percentage of Lymphocyte Subsets Altered By 2, 3, 7, 8-Tetracholorodibenzo-P-Dioxins (TCDD) in Rats. Human & Experimental Toxicology. 2011;30(12): 1986-1994.