Review Article

Prevalence and Trends of Overweight and Obesity Among Children and Adolescents in Turkey: AMeta-analysis

Cansev Meşe Yavuz

Abstract

Background: Over the past 40 years, the prevalence of overweight and obesity in children and adolescents has increased significantly worldwide, especially in low and middle-income countries. Studies have reported an increase in these rates also Turkey. **Objective:** to determine the prevalence of overweight and obesity based on articles published from 2000 to 2020 and conducted with children and adolescents ages 5-19. Besides, it was aimed to reveal the trend of overweight and obesity prevalence over the years. **Methods:** For this purpose, publications between 2000 and 2020 were searched in Pubmed, Web of Science and Ulakbim databases. Publications were reviewed considering the selection criteria and a total of 69 articles were included in the study. The heterogeneity of the studies was tested and funnel plot, Begg's test, Egger's test, Duval and Tweedie's trim and fill methods were used to determine publication bias. **Results:** The pooled prevalence of overweight was 13.3% (95% CI: 12.3-14.4), obesity was 7.8% (95% CI: 6.8-8.8). It was found that overweight and obesity prevalences increased between 2000-2004 and 2010-2019 periods. **Conclusion:** More effective strategies and policies should be implemented to substantially reduce or prevent childhood overweight and obesity.

Keywords: Children and adolescents, obesity, overweight, meta-analysis

International Journal of Human and Health Sciences Vol. 07 No. 01 January '23 Page: 20-30 DOI: http://dx.doi.org/10.31344/ijhhs.v7i1.492

Introduction

Obesity is a global health problem affecting children and adults in both developed and developing countries. It may occur depend on genetic, physiological and many environmental factors.¹ Obesity has negative health consequences both in the short and long term, it contributes to increasing the risk of diseases such as hypertension, stroke, some types of cancer, Type II diabetes. Besides, it is known that obesity reduces school success and self-confidence in children.^{2,3} In addition, obesity can cause a decrease in the quality of life.⁴ Particular attention should be paid to childhood overweight and obesity, because research shows that these can persist into adulthood.^{5,6}

World Health Organization (WHO) states that there has been a dramatic increase in the rates of obesity and overweight among children and adolescents ages 5-19 worldwide in the last 40 years. According to 2016 data, more than 340

million children and adolescents were overweight or obese worldwide.⁷ Although obesity and overweight have stabilized in some developed countries, the increase in overweight and obesity is much higher in some developing countries where both undernutrition and obesity are seen together.⁸ It is specified that the overweight and obesity rate is higher in Middle East, Central and Eastern Europe and North America⁹ According to many studies conducted with children and adolescents to determine the prevalence of overweight and obesity in Turkey, it was found these rates have increased.¹⁰⁻¹²

The study aims to determine the prevalence of overweight and obesity based on the studies conducted with children and adolescents aged 5-19 years in Turkey between 2000-2020. At the same time, it is aimed to evaluate the changes of these rates in 5-year periods between 2000 and 2019.

Correspondence to: Dr. Cansev Meşe Yavuz, Department of Anthropology, Faculty of Letters, Van YüzüncüYıl University, Van, Turkey. Email: cansevmese@yyu.edu.tr. Orcid ID: 0000-0002-8079-1230.

Methods

Search and study selection criteria

Studies conducted in different regions and cities of Turkey and published between 2000 and 2020 were included in this meta-analysis research. While searching the literature, the following criteria were taken as the basis; 1) The sample included between the ages of 5-19, 2) studies included data collection year between 2000-2019, 3) studies used age and sex-specific cut-off points of World Health Organization (WHO)¹³, Centers for Disease Control and Prevention (CDC)14, International Obesity Task Force (IOTF)15, Neyzi et al.16 and Bundak et al.¹⁷ to determine obesity in children and adolescents. In addition to these criteria, it was paid attention that the studies included in the study were in a cross-sectional model. Conducted with adults or not appropriate the age ranges, studies which are not cross-sectional research model and do not use the above-mentioned national and international age and sex-specific cut-off values in determining obesity were not included. As shown in Figure 1, PRISMA (preferred reporting items for systematic reviews and meta-analyses) flowchart for the study selection process was used. 18

While searching the literature, PUBMED and Web of Science, ULAKBİM which is a Turkish database were used and the studies published between January 2000 and December 2020 in these databases were searched. The searching was (prevalence OR frequency OR incidence) AND (obesity OR overweight OR body mass index OR bmi OR weight gain) AND (children OR childhood OR adolescent OR young) AND (Turkey OR Turkish) in databases. The evaluation of the eligible of the results obtained in the screening was repeated with an interval of 2 weeks. After the publications to be included in the study were determined, in case of missing information in these studies, the authors of the publications were contacted, and the missing informationwas completed.

Statistical analysis

Q and I² tests were used to determine whether the study was heterogeneous or not. An I² value of <40% is considered to be low, between 40% and 75% as medium and greater than 75% as high heterogeneity. If it is recommended to use the fixed effect model if the I² value is lower than 25% and the random effects model if it is higher than 75%. If it is higher than 75% and the random effects model and random effect model were

used in the meta-analysis of the study, depending on whether it showed heterogeneity or not. Since different studies are used, publication bias may occur in studies. Funnel plot, Begg test²¹, Egger's test²² and also the Duval and Tweedie's trim and fill method²³ were used to reveal whether this bias was present or not. MedCalc and Comprehensive Meta Analysis (CMA) programs were used to perform meta-analysis. The overweight and obesity trends have been determined by evaluating the data collection year in 5-year periods (2000-2004, 2005-2009, 2010-2014, 2015-2019).

Results

Study characteristics

A total of 69 studies were included in the study.²⁴⁻⁹² Since there was no information about overweight in 2 of these studies, overweight was evaluated in 67 studies. The studies were published between 2000 and 2020. The authors, sample size and age, publication year and data collection year of these 69 articles included in the study are presented in supplementary material 1. Overweight and obesity pooled prevalence was calculated with a total of 234764 and 241955 individuals, respectively.

The pooled prevalence of overweight and obesity

values were examined in determining heterogeneity and as seen in Table 1, it was 97.8% (%95 Cl: 97.5- 98.0) for overweight and 98.6% (%95 Cl: 98.5-98.8) for obesity. Since this indicates the presence of high heterogeneity, the random effects model was used. The overall pooled prevalence of overweight was 13.3 % (95% Cl: 12.3-14.4), obesity was 7.8% (95% CI 6.8-8.8). The forest plots of overall overweight and obesity were shown in Figure 2. The pooled prevalence of overweight was found 13.2% in boys (95% Cl: 11.8-14.7), 12.9% in girls (95% Cl: 11.6-14.2). Prevalence of obesity was 7.5% (95% Cl: 6.3-8.9) and 6.2% (95% Cl: 5.2-7.3) in boys and girls, respectively (Table 1 & 2; Fig. 2). The funnel plots for overweight and obesity to determine publication bias were shown in Figure 3. According to the results of the Egger's test (p=0.175) and the Begg's test (p=0.605) there is no evidence of publication bias (p>0.05) in obesity. Although the result of the Begg's test (p = 0.750) indicates no publication bias in overweight, Egger's test result (p = 0.0004) shows publication bias. In addition to these tests, Duval and

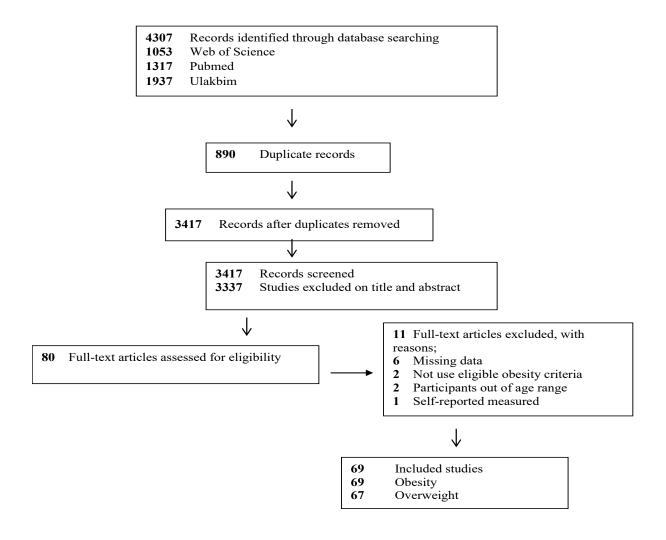


Figure 1. PRISMA flow-chart for the study Selection Process

Tweedie's Trim and Fill method was also used for overweight (Figure 4). In the random effect model, it was determined that the point estimate values were before and after the Trim and Fill method (15 studies trimmed) 0.13 (95% Cl: 0.12-0.14) and 0.15 (95% Cl: 0.13-0.16), respectively. It is seen that there is no significant difference (0.02) between these values, which indicates that the

publication bias is negligible (Figure 4). While the pooled prevalence of overweight and obesity were 11.2% and 2.9% between 2000 and 2004, 17.9% and 13.5% between 2015 and 2019, respectively (Figure 5). Overweight rates increased 1.6-fold and obesity rates increased 4.7 fold between 2000-2004 and 2015-2019 among children and adolescents (Figure 5).

Table 1.Prevalence of overweight and obesity

		Ove	erweight		Obesity				
Study and year	Sample size	Proportion	95% CI	Weight % Random	Sample size	Proportion	95% CI	Weight % Random	
Akış et al. (2003) ²⁴	5795	8.71	8.00-9.47	1.58	5795	1.66	1.34-2.02	1.5	
Manios et al. (2005) ²⁵	510	10.59	8.05-13.59	1.41	510	1.57	0.68-3.07	1.4	
Öner et al. (2004) ²⁶	989	11.02	9.14-13.14	1.5	989	1.82	1.08-2.86	1.45	
Ozumut et al. (2020) ²⁷	1479	14.87	13.10-16.79	1.53	1479	5.27	4.19-6.54	1.47	
Sağlam and Tarım (2008) ²⁸	5368	12.41	11.54-13.32	1.58	5368	7.81	7.10 -8.56	1.5	
Sur et al. (2005) ²⁹	1044	11.88	9.98-14	1.5	1044	2.01	1.25-3.06	1.46	
Baş et al. (2005) ³⁰	300	19	14.72-23.90	1.31	300	5	2.83-8.11	1.33	
Semiz et al. (2008) ³¹	850	11.65	9.57-14	1.48	850	1.41	0.73-2.45	1.44	
Turkkahraman et al. (2006) ³²	2468	14.30	12.94-15.75	1.56	2468	3.57	2.87-4.38	1.49	
Bayat et al. (2009) ³³	610	7.21	5.29-9.56	1.44	610	2.13	1.14 -3.62	1.42	
Nur at al. (2008) ³⁴	1020	3.53	2.48-4.85	1.5	1020	0.20	0.02-0.71	1.46	
Süzek et al. (2005) ³⁵	4260	10.38	9.48-11.33	1.58	4260	6.32	5.60-7.09	1.5	
Agirbasli et al. (2008) ³⁶	640	15.78	13.04-18.84	1.45	640	3.44	2.17-5.16	1.42	
Discigil et al. (2009) ³⁷	1367	12	10.32-13.84	1.53	1367	3.66	2.73-4.80	1.47	
Etiler et al. (2011) ³⁸	2491	11.80	10.56-13.13	1.56	2491	7.27	6.28-8.36	1.49	
Kara et al. (2010) ³⁹	1912	11.77	10.36-13.30	1.55	1912	3.35	2.59-4.25	1.48	
Kavak et al. (2014) ⁴⁰	1118	8.32	6.77-10.09	1.51	1118	3.22	2.27-4.43	1.46	
Ozmen et al. (2007) ⁴¹	2101	9	7.81-10.30	1.55	2101	1.14	0.73-1.70	1.49	
Ozturk et al. (2009) ⁴²	5358	15.81	14.84-16.81	1.58	5358	3.30	2.84-3.82	1.5	
Simsek et al. (2008) ⁴³	6924	10.46	9.74-11.20	1.59	6924	6.17	5.61-6.76	1.51	
Arı and Süzek (2008) ⁴⁴	231	11.25	7.49 -16.06	1.24	231	12.99	8.94-18.02	1.29	
Çalışır and Karaçam (2011) ⁴⁵	460	12.83	9.91-16.23	1.4	460	13.70	10.69-17.18	1.39	
Yorulmaz and Perçin Paçal (2012) ⁴⁶	250	13.6	9.61-18.48	1.26	250	1.2	0.25-3.467	1.3	
Borici et al. (2009) ⁴⁷	216	11.11	7.25-16.08	1.22	216	2.78	1.03-5.95	1.27	
Pirinçci et al. (2010) ⁴⁸	4258	11.30	10.36-12.29	1.58	4258	1.41	1.08-1.81	1.5	
Arı Yuca et al. (2010) ⁴⁹	9048	11.12	10.48-11.78	1.59	9048	2.19	1.90-2.51	1.51	
Duzova et al. (2013) ⁵⁰	3622	9.14	8.22-10.12	1.57	3622	8.78	7.88-9.75	1.5	
Albayrak and Kutlu (2012) ⁵¹	276	14.86	10.88-19.61	1.29	276	7.61	4.77-11.40	1.32	
Savaşhan et al. (2015) ⁵²	3963	11.10	10.14-12.12	1.57	3963	7.55	6.74-8.41	1.5	
Yabancı et al. (2009) ⁵³	375	8.53	5.91-11.83	1.36	375	10.13	7.27-13.64	1.36	
Akçam et al. (2013) ⁵⁴	5716	10.99	10.19-11.83	1.58	5716	12.46	11.61-13.34	1.5	
Dündar and Öz (2012) ⁵⁵	2477	22.37	20.74-24.06	1.56	2477	10.25	9.09-11.52	1.49	
Yabancı and Şimşek (2011) ⁵⁶	370	8.11	5.54-11.37	1.35	370	4.32	2.49-6.93	1.36	
Ercan et al. (2012) ⁵⁷	8848	8.33	7.76-8.92	1.59	8848	7.66	7.12-8.24	1.51	
Önsüz and Demir (2015) ⁵⁸	2166	8.26	7.14-9.50	1.55	2166	18.01	16.41-19.69	1.49	
Yılmaz et al. (2018) ⁵⁹	1072	16.70	14.51-19.07	1.51	1072	3.92	2.84-5.26	1.46	
Battaloğlu İnanç et al. (2012) ⁶⁰	3460	15.78	14.58-17.04	1.57	3460	10.58	9.57-11.65	1.5	
Demirci et al. (2013) ⁶¹	-	-	-	1.53	1000	11.2	9.31-13.32	1.45	
Eker et al. (2018) ⁶²	1357	12.60	10.88-14.48	1.6	1357	2.58	1.80-3.57	1.47	
Kaya et al. (2014) ⁶³	92933	8.66	8.48-8.84	1.56	92933	6.50	6.35-6.66	1.51	
Kilinc et al. (2019)64	2718	13.17	11.92-14.50	1.57	2718	4.23	3.51-5.056	1.49	
Geckil et al. (2017) ⁶⁵	3028	13.44	12.25-14.71	1.4	3028	8.69	7.71-9.75	1.49	
Meseri et al. (2015) ⁶⁶	462	14.94	11.81-18.52	1.43	462	18.18	14.77-22.01	1.39	
Özilbey and Ergör (2015) ⁶⁷	549	4.92	3.27-7.07	1.56	549	24.95	21.39-28.80	1.41	

Polat et al. (2014) ⁶⁸ Turhan et al. (2015) ⁶⁹	2826	13.87	12.62-15.20	1.51 1.55	2826 6191	13.91 8.77	12.65-15.24 8.08 -9.50	1.49 1.5	
Cam and Nur (2015) ⁷⁰	1175	18.81	16.61-21.16	1.58	1175	9.02	7.45-10.81	1.46	
Daştan et al. (2014) ⁷¹	2009	13.64	12.17-15.22	1.59	2009	10.80	9.48 -12.242	1.48	
Özcebe et al. (2015) ⁷²	4958	13.55	12.61-14.54	1.52	4958	8.27	7.52-9.07	1.5	
Koca et al. (2017) ⁷³	7116	13.60	12.81-14.42	1.52	7116	9.91	9.22-10.62	1.51	
Öztürk Haney (2018) ⁷⁴	1289	12.72	10.95-14.67	1.54	1289	14.74	12.85-16.79	1.47	
Yılmaz and Mayda (2017) ⁷⁵	1245	15.34	13.38-17.46	1.57	1245	10.12	8.50-11.93	1.47	
Celmeli et al. (2019) ⁷⁶	1687	23.24	21.24-25.33	1.48	1687	9.78	8.40-11.30	1.48	
Yardim et al. (2019) ⁷⁷	3291	21.18	19.79-22.61	1.16	3291	14.68	13.48 -15.93	1.5	
Karadeniz and Can (2019) ⁷⁸	832	9.13	7.26-11.30	1.54	832	8.53	6.73-10.64	1.44	
Karakus et al. (2019) ⁷⁹	177	12.43	7.96-18.21	1.55	177	20.90	15.17-27.64	1.23	
Comba et al. (2018)80	1684	13.60	12-15.33	1.49	1684	6.53	5.40 -7.82	1.48	
Gökler et al. (2020) ⁸¹	1997	13.82	12.34-15.41	1.49	1997	6.51	5.47-7.68	1.48	
Korkmaz and Kabaran (2020) ⁸²	900	11.22	9.23-13.47	1.5	900	25.11	22.31-28.08	1.45	
Meşe Yavuz and Koca Özer (2019) ⁸³	933	18.44	16-21.07	1.39	933	11.25	9.30-13.46	1.45	
Yılmaz et al. (2019)84	1003	24.83	22.18-27.62	1.35	1003	9.67	7.91-11.67	1.45	
Agadayı et al. (2019)85	449	13.81	10.75-17.35	1.55	449	7.35	5.11-10.17	1.39	
Akyüz and Ural (2020) ⁸⁶	371	13.75	10.41-17.67	1.52	371	23.18	18.98-27.81	1.36	
Deniz et al. (2020)87	1980	21.51	19.72-23.39	1.42	1980	14.60	13.07-16.23	1.48	
Deniz and Oguzoncul (2019)88	1278	23.16	20.87-25.57	1.48	1278	7.04	5.70-8.59	1.47	
Erdal et al. (2020)89	544	25.37	21.76-29.24	1.49	544	13.05	10.34-16.18	1.41	
Ustuner Top et al. (2019)90	791	27.05	23.99-30.29	1.49	791	19.34	16.65-22.27	1.44	
Çam and Top (2020)91	896	24.44	21.66-27.39	1.58	896	17.41	14.98-20.06	1.45	
Meseri and Akanalci (2020)92	874	12.13	10.04-14.48	1.41	874	25.06	22.22-28.07	1.45	
Total (random effect)	234764	13.33	12.33 -14.37	100	241955	7.79	6.81- 8.83	100	
	(Q=2936.826	6, df=66, p< 0.000	1	Q=5007.938, df=68, p< 0.0001				
	I ² =	97.75%, 95	5% CI= (97.48-98.	00)	I ² =98.62%, 95% CI= (98.51-98.77)				

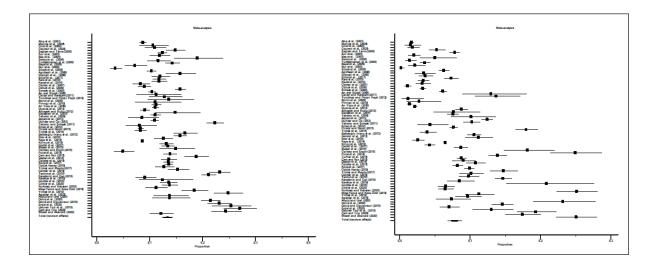


Figure 2. Forest plots of overweight and obesity (upper:overweight, lower: obesity)

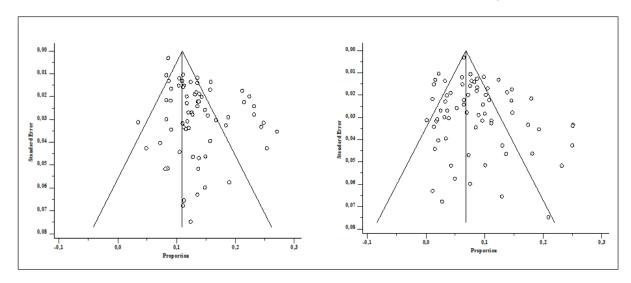


Figure 3. Funnel plots of overweight and obesity (upper:overweight, lower: obesity)

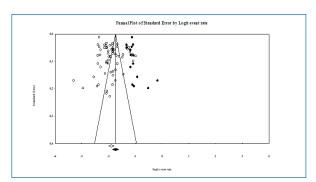
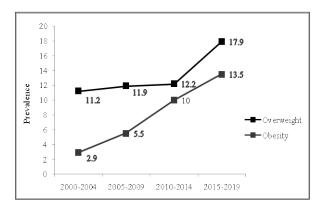



Figure 4. Trim and fill method in overweight

Figure 5.Trends of overweight and obesity prevalence between 2000 and 2019

Discussion

The research shows that there has been an increase in overweight and obesity rates over the years. The obesity rate was 6.5% and overweight was 14.3% according to the results of a study conducted in children between the ages of 6-10 in a national survey.⁹³ In another national study, the overall

prevalence of overweight and obesity was 12.5% and 4.8% respectively, in children and adolescents between the ages of 6-17 in 2010.94 According to a study conducted with 188 countries including Turkey it has been reported that in developing countries the prevalence of overweight and obesity increased from 8.1% to 12.9% and 8.4% to 13.4% in boys and girls, respectively between 1980 and 2013.95 Olaya et al. (2015) stated overweight and obesity prevalence was higher in East Europe including Turkey than West Europe. In the study, the overweight prevalence was 21%, while the obesity rate was 7.7% in Turkey between 6-11 years.96 In a meta-analysis study conducted in children and adolescents between the ages of 5-19 in Turkey, the obesity prevalence was found 5.8% and this rate increased between 1990 and 2015.10 The current study was determined a higher rate of obesity than a meta-analysis study conducted in Iran⁹⁷ and a lower rate than a study in Brazil.⁹⁸

It is clear that seen this trend worldwide, especially in low and middle-income countries, also influenced children and adolescents in Turkey. In the current study, it was determined that overweight increased from 11.2% to 17.9% and obesity increased from 2.9% to 13.5% between 2000-2004 and 2015-2019. Although many factors effect on the increase in overweight and obesity, factors such as economic development of countries, change in diet, increase in fast food consumption habits, sedentary life may affect obesity. 99-101 On the other hand, the increased amount of daily energy intake between the years

1960-2011 with the increase of welfare level in Turkey may affect obesity. ¹⁰² In addition, there are risk factors influencing childhood obesity such as family with high incomes, urban children, having obese parents, high birthweight, soft drinks or time spent in front of TV and PC in Turkey. ¹⁰³

Many studies have shown that overweight and obesity which cause some health problems and have an increasing trend are higher in boys than girls, as in the current study. 104,84 The fact that boys are more ecosensitive than girls can be considered as a reason for this situation. 105 Besides, it is stated that this difference according to gender is affected by the behavioral determinants of overweight and obesity and sociocultural factors. 106,107

In conclusion, the rates of overweight and obesity have increased between 2000-2004 and 2015-2019 periods. In order to determine prevalences

and trends of overweight and obesity in children and adolescent in Turkey, further national representative research systematically repeated are needed. Considering the increasing rates of overweight and obesity, it is necessary to raise awareness of individuals about the short and long-term consequences of obesity both in the family and in school programs and it is thought that more effective strategies and policies should be implemented to substantially reduce or prevent childhood overweight and obesity.

This study has a limitation. Since the age ranges were not suitable for each other in the studies included in the research, the changes and trends of overweight and obesity prevalence by age groups were ignored. Therefore, there is a need for studies examining the change in overweight and obesity according to age groups.

References

- Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2): 51-65. doi: 10.1016/j. mayocp.2016.09.017
- Sahoo K. Sahoo B. Choudhury AK. Sofi NY. Kumar R, Bhadoria, AS. Childhood Obesity: Causes and Consequences. J Family Med Prim Care. 2015; 4(2): 187-192. doi: 10.4103/2249-4863.154628.
- Reilly JJ, Methven E, McDowell ZC, Hacking B, Alexander D, Stewart L. et al. Health consequences of obesity. Arch Dis Child. 2003; 88: 748-752. doi: 10.1136/adc.88.9.748
- 4. Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology. 2019; 15(5): 288-298. doi: 10.1038/s41574-019-0176-8.
- Herman KM, Craig CL, Gauvin L, Katzmarzyk PT. Tracking of obesity and physical activity from childhood to adulthood: The Physical Activity Longitudinal Study. Int J PediatrObes. 2009; 4(4): 281–288. doi: 10.3109/17477160802596171
- Singh AS, Mulder C, Twisk JWR. van Mechelen W, Chinapaw MJM. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008; 9: 474-488. doi: 10.1111/j.1467-789X.2008.00475.x.
- World Health Organization, Obesity and Overweight,
 April 2000, Available from: https://www.who.

- int/news-room/fact-sheets/detail/obesity-and-overweight Accessed February 12, 2021.
- Lobstein T, Jackson-Leach R, Moodie ML. Hall KD, Gortmaker SL, Swinburn BA. et al. Child and adolescent obesity: part of a bigger picture. Lancet. 2015; 385 (9986): 2510–20. doi: 10.1016/S0140-6736(14)61746-3
- James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res 2001;9 (Suppl. 4): 228–233. doi: 10.1038/oby.2001.123
- Alper Z, Ercan İ, Uncu Y. A Meta-Analysis and the Evaluation of Trends in Obesity Prevalence among Children and Adolescents aged 5–19 in Turkey: 1990 through 2015. J Clin Res Pediatr Endocrinol 2018;10(1): 59–67. doi:10.4274/jcrpe.5043.
- 11. Erem C. Prevalence of Overweight and Obesity in Turkey. IJC Metabolic and Endocrine 2015; (8): 38-41. Doi:10.1016/j.ijcme.2015.07.002
- 12. Yumuk VD. Prevalence of obesity in Turkey. Obes Rev 2005; 6(1): 9-10. oi: 10.1111/j.1467-789X.2005.00172.x.
- de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ 2007; 85: 660–667. doi: 10.2471/blt.07.043497.
- Kuczmarski RJ. Ogden CL. Guo SS. Grummer-Strawn LM, Flegal KM, Mei Z, et al. 2000 CDC growth charts for the United States: methods and

- development. Vital Health Stat 11 2002; 246: 1-190.
- Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 2000; 320: 1240–1243. doi: 10.1136/ bmj.320.7244.1240
- Neyzi O, Günöz H, Furman RB, Gülbin G. Weight, height, head circumference and body mass index references for Turkish children. Turk Pediatr J 2008; 51: 1-14.
- Bundak R, Furman A, Gunoz H, Darendeliler F, Bas F, Neyzi O. Body mass index references for Turkish children. Acta Paediatrica 2006; 95: 194-198. doi: 10.1080/08035250500334738
- Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.doi: 10.1371/journal.pmed.1000097
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557–560. doi: 10.1136/bmj.327.7414.557.
- Ried K. Interpreting and understanding metaanalysis graphs-a practical guide. Australian Family Physician 2006; 35: 635–638.
- 21. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994; 50: 1088–1101.
- 22. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629–634.
- Duval S, Tweedie R. A nonparametric "trim and fill" method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association 2000; 95: 89–98. DOI:10.1080/016214 59.2000.10473905
- 24. Akış N, Pala K, Irgıl E, Aydın N, Aksu H. Overweight and Obesity Among 6-14 Year Aged Schoolchildren at Six Elementary Schools in Orhangazi-Bursa. *Uludag*University Med J 2003; 29: 17-20.
- 25. Manios Y. Kolotourou M. Moschonis G. Sur H, Keskin Y, Kocaoglu B,et al. Macronutrient intake, physical activity, serum lipids and increased body weight in primary schoolchildren in Istanbul. Pediatrics International 2005 Apr; 47(2): 159-166. doi: 10.1111/j.1442-200x.2005.02047.x.
- Öner N, Vatansever U, Sarı A. Prevalence of underweight, overweight and obesity in Turkish adolescents. Swiss Med Wkly 2004; 134: 529-533.
- 27. Ozumut SH, Erguven M, Besli E. Obesogenic Environment in Childhood: Implications of High Socioeconomic Level in a Developing

- Country. Medeni Med J 2020; 35(3): 236–241. doi: 10.5222/MMJ.2020.99836
- Sağlam H, Tarım O. Prevalence and correlates of obesity in schoolchildren from the city of Bursa. Turkey. J Clin Res Ped Endo 2008; 1: 80–88. doi: 10.4008/jcrpe.v1i2.15.
- Sur H. Kolotourou M. Dimitriou M. Kocaoglu B, Keskin Y, Hayran O,et al. Biochemical and behavioral indices related to BMI in schoolchildren in urban Turkey. Prev Med 2005; 41: 614-621. doi: 10.1016/j.ypmed.2004.11.029.
- Baş M, Altan T, Dinçer D, Aran E, Kaya HG, Yuksek O. Determination of dietary habits as a risk factor of cardiovascular heart disease in Turkish adolescents. Eur J Nutr 2005; 44: 174-182. doi: 10.1007/s00394-004-0509-8.
- 31. Semiz S, Özdemir OM, Özdemir AS. The prevalence of obesity in childhood 6-15 years of age in Denizli. Pamukkkale Med J 2008; 1: 1-4.
- Turkkahraman D, Bircan I, Tosun O, Saka O. Prevalence and risk factors of obesity in school children in Antalya. Turkey. Saudi Med J 2006; 27: 1028–1033.
- 33. Bayat M, Erdem E, Barik O, Baser M, Tasci S. Blood pressure, height, weight and body mass index of primary school students in a low socioeconomic district in Turkey. Int Nurs Rev 2009; 56: 375-380.
- 34. Nur N, Cetinkaya S, Yilmaz A, Ayvaz A, Bulut MO, Sümer H. Prevalence of hypertension among high school students in a middle anatolian province of Turkey. J Health PopulNutr 2008; 26: 88-94.
- 35. Süzek H, Arı Z, Uyanık B, The eating habits and prevalences of overweight and obesity in 6-15 years old school-children living in the villages of Muğla center. The New Journal of Medicine 2010; 27: 22-28.
- 36. Agirbasli M, Cakir S, Ozme S, Ciliv G. Metabolic syndrome in Turkish children and adolescents. Metabolism 2006; 55:1002–1006.
- 37. Discigil G, Tekin N, Soylemez A. Obesity in Turkish children and adolescents: prevalence and non-nutritional correlates in an urban sample. Child Care Health Dev 2009; 35: 153–8. doi: 10.1111/j.1365-2214.2008.00919.x
- Etiler N, Cizmecioglu FM, Hatun S, Hamzaoglu O. Nutritional status of students in Kocaeli. Turkey: A population-based study. Pediatr Int 2011; 53: 231-235. doi: 10.1111/j.1442-200X.2010.03206.x.
- 39. Kara IH, Dikici B, Yel S, Ozdemir Ö. The prevalence of malnutrition and obesity in schoolchildren in the Southeast Anatolia Region of Turkey. Duzce Medical Journal 2010; 12: 54-62.

- Kavak V, Pilmane M, Kazoka D. Body mass index, waist circumference and waist-to-hip-ratio in the prediction of obesity in Turkish teenagers. Coll Antropol. 2014; 38. 445–451.
- Ozmen D, Ozmen E, Ergin D. Cetinkaya AC, Sen N, Dundar PE. et al. The association of self-esteem, depression and body satisfaction with obesity among Turkish adolescents. BMC Public Health 2007; 7:80. doi: 10.1186/1471-2458-7-80
- Ozturk A, Mazicioglu MM, Poyrazoglu S, Cicek B, Gunay O, Kurtoglu S. The relationship between sleep duration and obesity in Turkish children and adolescents. Acta Paediatr 2009; 98: 699–702. doi: 10.1111/j.1651-2227.2008.01169.x.
- 43. Simsek E, Akpinar S, Bahcebasi T, Senses DA, Kocabay K. The prevalence of overweight and obese children aged 6-17 years in the West Black Sea region of Turkey. Int J Clin Pract 2008; 62: 1033-1038. doi: 10.1111/j.1742-1241.2007.01421.x.
- 44. Arı Z, Süzek H, Serum Lipid Profile and Obesity Scanning of A Group of Primary School Students in Central Villages of Mugla Province. Adnen Menderes ÜniversitesiTıpFakültesiDergisi 2008; 9: 11-16.
- 45. Çalışır H, Karaçam Z. The prevalence of overweight and obesity in primary schoolchildren and its correlation with sociodemographic factors in Aydin. Turkey. Int J NursPract 2011; 17: 166-173.
- 46. Yorulmaz H, PerçinPaçal F, Assessment of Nutritional Habits and Obesity Situations of Adolescents in 16-18 Age Group. TurkiyeKlinikleri J Med Sci 2012; 32: 364-370. doi: 10.5336/medsci.2011-23049
- Borici S, Agaoglu NB, Baykan OA, Agirbasli M. Blood pressure and anthropometric measurements in Albanian versus Turkish children and adolescents. Acta Cardiologica 2009; 64: 747-754. doi: 10.2143/ AC.64.6.2044738
- 48. Pirinçci E, Durmuş B, Gündoğdu C, Açık Y. Prevalence and risk factors of overweight and obesity among urban school children in Elazig city, Eastern Turkey, 2007. Ann Hum Biol 2010; 37: 44-56. doi: 10.3109/03014460903218984.
- 49. Arı Yuca S, Yılmaz C, Cesur Y, Doğan M, Kaya A. Başaranoğlu M. Prevalence of overweight and obesity in children and adolescents in eastern Turkey. J Clin Res Pediatr Endocrinol 2010; 2: 159– 163. doi: 10.4274/jcrpe.v2i4.159
- 50. Duzova A, Yalçınkaya F, Baskin E, Bakkaloglu A, Soylemezoglu O. Prevalence of hypertension and decreased glomerular filtration rate in obese children: results of a population-based field study. Nephrol Dial Transplant 2013; 28 (suppl 4):iv166-iv171.doi: 10.1093/ndt/gft317

- 51. Albayrak B, Kutlu Y. The determination of blood pressure, anger expression and body mass index in adolescents in Turkey: a pilot study. Coll Antropol 2012; 36: 87-92.
- Savaşhan C, Erdal M, Sarı O, Aydogan Ü. Obesity frequency in school children and related risk factors. Turk J Fam Pract2015; 19: 14-21.doi: 10.15511/ tahd.15.01002
- 53. Yabancı N, Şimşek I, İstanbulluoğlu H. Bakır B. The prevalence of obesity and associated factors in a kindergarten in Ankara. TAF Preventive Medicine Bull 2009; 8: 397-404.
- Akçam M, Boyaci A, Pirgon O, Dundar B. Evaluation of the change in the prevalence of childhood obesity in ten schools in the province of Isparta. Turk Arch Ped 2008; (1): 152-155. DOI: 10.4274/tpa.1074
- 55. Dündar C, Öz H. Obesity-Related Factors in Turkish School Children. The Scientific World Journal 2012:1-5. doi: 10.1100/2012/353485.
- Yabancı N, Şimşek I. A study on socioeconomic status and obesity in a group of adolescents. TAF Preventive Medicine Bull 2011; 10: 433-440. DOI:10.5455/ pmb.20110208114802
- Ercan S, Dallar YB, Onen S, Engiz O. Prevalence of obesity and associated risk factors among adolescents in Ankara. Turkey. J Clin Res Pediatr Endocrinol 2012; 4(4): 204–207. doi: 10.4274/jcrpe.714
- 58. Önsüz FM, Demir F. Prevalence of hypertension and its association with obesity among school children aged 6-15 living in Sakarya province in Turkey. Turk J Med Sci 2015; 45: 907-912.
- Yılmaz BÖ, Çiçek B, Kaner G. Determining the obesity level and related risk factors in adolescents attending at high schools in Kayseri province. Turk Hij Den BiyolDerg 2018; 5(1): 77-88. DOI: 10.5505/TurkHijyen.2018.33341
- 60. Battaloğluİnanç B, Şahin DS, Oğuzöncül AF, Bindak R, Mungan F. Prevalence of obesity in elementary schools in mardin. South-eastern of Turkey: a preliminary study. Balkan Med J 2012; 29(4): 424–430. doi: 10.5152/balkanmedj.2012.051
- 61. Demirci H, Nuhoglu C, Ursavas IS, Isildak S, Basaran EO, Kılıc MY. Obesity and asymptomatic hypertension among children aged 6-13 years living in Bursa. Turkey. Family Practice 2013; 30: 629-633. doi: 10.1093/fampra/cmt048
- 62. Eker HH. Taşdemir M. Mercan S. Eker, HH, Taşdemir M, Mercan S, Mucaz M, Bektemur G, Şahinoz S, Özkaya E. et al. Obesity in adolescents and the risk factors. Turk J Phys Med Rehab 2018; 64(1): 37-45. Doi:10.5606/tftrd.2018.1402
- 63. Kaya CA, Akman M, Unalan PC, Demir HP, Keskin

- S. Weight, diet and physical activity habits of Turkish adolescents living in a semi-urban area of Istanbul: gender differences. ObeMetab 2010; 6: 94-99.
- 64. Kilinc A, Col N, Demircioglu-Kilic B, Aydin N, Balat A, Keskin M. Waist to height ratio as a screening tool for identifying childhood obesity and associated factors. Pak J Med Sci 2019; 35(6): 1652-1658. doi: 10.12669/pjms.35.6.748.
- 65. Geckil E, Aslan S, Ister ED, Simsek DK, Sahin T. Prevalence and Risk Factors of Obesity and Overweight in Elementary School-Age (5 to 15 years Old) Children in South-eastern Turkey. Iran J Pediatr 2017; 27(2): e7218. doi: 10.5812/ijp.7218.
- 66. Meseri R, Mermer G, Ergin I, Hassoy H. Evaluation of obesity prevalence and nutritional knowledge in adolescents in semi urban area of Turkey. Progress in Nutrition 2015; 17: 58–67.
- 67. Özilbey P, Ergör G. Determining the prevalence of obesity in primary school students and eating habits in Izmir. Turk J Public Health 2015; 13(1): 30-39.
- Polat M, Yıkılkan H, Aypak C. Görpelioğlu S. The relationship between BMI and blood pressure in children aged 7-12 years in Ankara. Turkey. Public Health Nutr 2014; 17: 2419-2424.doi: 10.1017/ S1368980014000846.
- 69. Turhan E, Tözün M, Doğanay S. The Prevalence of Obesity in First Year Primary School Students in Nine Districts of İzmir Province. Journal of Clinical Analytical Medicine 2015; 6: 755-759.
- Çam H, Nur N. A study on the prevalence of Internet addiction and its association with psychopathological symptoms and obesity in adolescents. TAF Preventive Medicine Bull 2015; 14(3): 181–188. DOI:10.5455/ pmb.20141016033204
- Daştan I, Çetinkaya V, Delice ME. The obesity and overweight prevalence among students between the ages of 7 and 18 in İzmir. Med J Bakirkoy 2014; 10: 139-146. DOI:10.5350/BTDMJB201410402
- Özcebe H, Bosi TB, Yardım N. Çelikcan E, Çelikay N, Keskinkiliç B. et al. Owerweight and obesity among children in Turkey. TAF Preventive Medicine Bull 2015; 14: 145-152. Doi:10.26719/emhj.18.052.
- 73. Koca T, Akcam M. SerdarogluDereci S. Breakfast habits, dairy product consumption, physical activity, and their associations with body mass index in children aged 6-18. Eur J Pediatr 2017; 176(9): 1251–1257. doi: 10.1007/s00431-017-2976-y.
- 74. Öztürk Haney M. The relationship between BMI and blood pressure in school-age children in Izmir, Turkey. ProgrNutr 2018;20 (3): 372-377. Doi: 10.23751/pn.v20i3.6079
- 75. Yılmaz M, Mayda AS. Determination of the Obesity

- Prevalence and Risk Factors in School Children in Duzce. Duzce Med J 2017; 19(2):42–47.
- 76. Çelmeli G. Çürek Y. Arslan Gülten Z. Yardımsever M, Koyun M, Akçurin S. et al. Remarkable Increase in the Prevalence of Overweight and Obesity Among School Age Children in Antalya. Turkey, Between 2003 and 2015. J Clin Res Pediatr Endocrinol 2019; 11: 76–81. doi: 10.4274/jcrpe.galenos.2018.2018.0108.
- Yardim M. Özcebe H. Araz OM. Uner S, Li S, Unlu HK.et al. Prevalence of childhood obesity and related parental factors in Ankara. Turkey. East Mediterr Health J 2019; 25: 374-384. doi: 10.26719/ emhj.18.052.
- Karadeniz S, Can S. The Relationship between the Body Mass Index and Different Education Times in Secondary Schools. Asian Journal of Education and Training 2019; 5(1): 275-279. Doi: 10.20448/ journal.522.2019.51.275.279
- Karakus B, Save D, Ates M, Kolasayin M, Tuncekin I. Prevalence of obesity and overweight among primary school children in a District of Istanbul. Turkey. Marmara Med J 2019; 32(2): 76–80. Doi: 10.5472/ marumi.570909
- Comba A, Demir E, Eren NB. Nutritional status and related factors of school children in Çorum, Turkey. Public Health Nutr 2019; 22: 122–31.doi: 10.1017/ S1368980018002938.
- Gökler ME, Buğrul N, Metintaş S, Kalyoncu C. Adolescent obesity and associated cardiovascular risk factors of rural and urban life (Eskisehir, Turkey). Cent Eur J Public Health 2015; 23:20-25. doi: 10.21101/cejph.a3958.
- 82. Korkmaz GO, Kabaran S, Protective effects of a Mediterraneanlike dietary pattern on obesity, abdominal obesity and large neck circumference in a cohort of Turkish children aged 6-9 years. Asia Pac J Clin Nutr 2020; 29(2): 363-71. oi: 10.6133/apjcn.202007_29(2).0019.
- 83. Meşe Yavuz C, Özer Koca B. Evaluation of Dietary Habits and Nutritional Status in Adolescence Period School Children. Journal of Tourism and Gastronomy Studies 2019; 7(1): 225-243. Doi: 10.21325/ jotags.2019.361
- 84. Yılmaz M, AğartıoğluKundakçı G, Dereli F, ÖzgüvenÖztornacı B, EgelioğluCetişli N. Obesity Prevalence and Associated Characteristics in Primary School Students According to Age and Gender. JCP 2019; 17(1): 127-140.
- 85. Agadayı E, Çelik N, Çetinkaya S, Nemmezi Karaca S. Determination of the frequency and the affecting factors of obesity in school age children and adolescents in a rural area in Sivas Province. Ankara Med J 2019; 19(2): 325-336. Doi:10.17098/

- amj.571393
- 86. Akyüz YE, Ural B. Childhood Obesity: Examining BMI. Body Fat. Food Preferences, and Physical Activity. Medical Sciences 2020; 15(2): 35-44. Doi: 10.12739/NWSA.2020.15.2.1B0088
- 87. Deniz S, Şirin H, Kıvrak M, Kaplan Z, Ketrez G, Üner S. Factors associated with overweight and obesity in students of 5-14 age group in Mersin. Gulhane Med J 2020; 62(4): 245–253.
- Deniz S, Oguzoncul AF. The prevalence of obesity and related factors among primary and secondary school students. Niger J Clin Pract 2019; 22(12): 1685-1692. doi: 10.4103/njcp.njcp_173_19.
- 89. Erdal İ, Yalçin SS, Aksan A, Gençal D, Kanbur N. How useful are anthropometric measurements as predictive markers for elevated blood pressure in adolescents in different gender?. J Pediatr Endocrinol Metab 2020 Sep 25; 33(9): 1203-1211. doi: 10.1515/jpem-2020-0175.
- Ustuner Top F, Kaya B, Tepe B, Cam HH. Prevalence of Obesity and Related Risk Factors among Secondary School Adolescents. International Journal of Caring Sciences 2019; 12(1): 377-383
- 91. Çam HH, Ustuner Top F. Prevalence of hypertension and its association with body mass index and waist circumference among adolescents in Turkey: A cross-sectional study. J PediatrNurs 2020; 57: e29-e33. doi: 10.1016/j.pedn.2020.09.017.
- Meseri R, Akanalci C. Food addiction: A key factor contributing to obesity?. J Res Med Sci 2020Jul 27;25: 71. doi: 10.4103/jrms.JRMS_971_19.
- 93. T.C. SağlıkBakanlığı. Temel SağlıkHizmetleri Genel Müdürlüğü. Türkiye'deokulçağıçocuklarında (6-10 yaş) büyümeninizlenmesi (TOÇBİ) projesiaraştırmaraporu. Ankara. 2011:1-121. Available from: http://beslenme.gov.tr/content/ files/yayınlar/kitaplar/diger_kitaplar/tocbi_kitap.pdf. Accessed February 15, 2021.
- 94. Sağlık Bakanlığı. Türkiye Beslenmeve Sağlık Araştırması 2010: Beslenme Durumu ve Alışkanlıklarının DeğerlendirilmesiSonuçRaporu.; 2014. Available from: https://hsgm.saglik.gov.tr/depo/birimler/saglikli-beslenme-hareketli-hayat-db/Yayinlar/kitaplar/diger-kitaplar/TBSA-Beslenme-Yayini.pdf. Accessed February 15, 2021.
- 95. Ng M, Fleming T, Robinson M. Thomson B, Graetz N, Margono C. et al. Global Regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 766–781. doi: 10.1016/S0140-6736(14)60460-8.
- 96. Olaya B. Moneta MV. Pez O. Bitfoi A, Carta MG,

- Eke C. et al. Country-level and individual correlates of overweight and obesity among primary school children: a cross-sectional study in seven European countries. BMC Public Health 2015; 15: 475. doi: 10.1186/s12889-015-1809-z.
- 97. Khazaei S, Mohammadian-Hafshejani A, Nooraliey P, Keshvari-Delavar M, Ghafari M, Pourmoghaddas A.et al. The prevalence of obesity among schoolaged children and youth aged 6-18 years in Iran: A systematic review and meta-analysis study. ARYA atherosclerosis 2017; 13(1): 35–43.
- 98. Aiello AM, Marques de Mello L, Souza Nunes M, Soares da Silva A, Nunes A. Prevalence of obesity in children and adolescents in Brazil: a meta-analysis of cross-sectional studies. CurrPediatr Rev 2015;11(1): 36–42. doi: 10.2174/1573396311666150501003250.
- 99. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 2012;70: 3–21. doi: 10.1111/j.1753-4887.2011.00456.x.
- 100. Hoffman D. Obesity in developing countries: Causes and implications. Food Nutrition and Agriculture 2001; 28: 35-44.
- 101. World Health Organization. Obesity: Preventing and Managing the Global Epidemic Report of the WHO Consultation. Geneva: WHO. 2000.
- 102. Türközü D, Ayhan B, Köksal E. The nutrition transition in Turkey: trends in energy and macronutrients supply from 1961 to 2011. Gazi Med J 2017; 28(4): 283–288.
- 103. Bereket A, Atay Z. Current status of childhood obesity and its associated morbidities in Turkey. J Clin Res Pediatr Endocrinol 2012; 4:1–7.
- 104. Guo Y, Yin X, Wu H, Chai X, Yang X. Trends in Overweight and Obesity Among Children and Adolescents in China from 1991 to 2015: A Meta Analysis. Int J Environ Res Public Health 2019;16 (23): 4656. doi: 10.3390/ijerph16234656.
- 105. Siniarska A, Nieczuja-Dwojacka J, Grochowska M, Kozieł S. Body structure, muscular strength and living conditions of primary school children in Warsaw. J Biosoc Sci.2020;53(1): 98-107.
- 106. Caine-Bish NL, Scheule B. Gender differences in food preferences of school-aged children and adolescents. J Sch Health. 2009;79 (11):532-40.
- 107. Shah B, Tombeau Cost K, Fuller A, Birken CS. Anderson LN. Sex and gender differences in childhood obesity: contributing to the research agenda. BMJ Nutrition Prevention and Health. 2020;3(2):387-90.